
BoFL: Bayesian Optimized Local Training Pace Control for
Energy Efficient Federated Learning

Hongpeng Guo
UIUC

Urbana, Illinois
hg5@illinois.edu

Haotian Gu
UC Berkeley

Berkeley, California
haotian_gu@berkeley.edu

Zhe Yang
UIUC

Urbana, Illinois
zheyang3@illinois.edu

Xiaoyang Wang
UIUC

Urbana, Illinois
xw28@illinois.edu

Eun Kyung Lee
IBM Research

Yorktown Heights, New York
eunkyung.lee@us.ibm.com

Nandhini Chandramoorthy
IBM Research

Yorktown Heights, New York
Nandhini.Chandramoorthy@ibm.com

Tamar Eilam
IBM Research

Yorktown Heights, New York
eilamt@us.ibm.com

Deming Chen
UIUC

Urbana, Illinois
dchen@illinois.edu

Klara Nahrstedt
UIUC

Urbana, Illinois
klara@illinois.edu

ABSTRACT

Federated learning (FL) is a machine learning paradigm that en-
ables a cluster of decentralized edge devices to collaboratively train
a shared machine learning model without exposing users’ raw
data. However, the intensive model training computation is energy-
demanding and poses severe challenges to end devices’ battery life.
In this paper, we present BoFL, a training pace controller deployed
on the edge devices that actuates the hardware operational fre-
quencies over multiple configurations to achieve energy-efficient
federated learning. BoFL operates in an explore-then-exploit manner
within limited rounds of FL tasks. BoFL explores the large hard-
ware frequency space strategically with a tailor-designed Bayesian
optimization algorithm. BoFL first finds a set of good operational
configurations within few task training rounds, and then exploits
these configurations in the remaining rounds to achieve minimized
energy consumption for model training. Experiments on multiple
real-world edge devices with different FL tasks suggest that BoFL
can reduce energy consumption of model training by around 26%,
and achieve near-optimal energy efficiency.

CCS CONCEPTS

•Computingmethodologies→Distributed computingmethod-

ologies; Learning paradigms; •Hardware→Power estimation

and optimization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9340-9/22/11. . . $15.00
https://doi.org/10.1145/3528535.3565244

KEYWORDS

Federated learning, Energy efficient, Dynamic voltage and fre-
quency scaling, Bayesian optimization

ACM Reference Format:

Hongpeng Guo, Haotian Gu, Zhe Yang, Xiaoyang Wang, Eun Kyung Lee,
Nandhini Chandramoorthy, Tamar Eilam, Deming Chen, and Klara Nahrst-
edt. 2022. BoFL: Bayesian Optimized Local Training Pace Control for Energy
Efficient Federated Learning. In 23rd ACM/IFIP International Middleware Con-
ference (Middleware ’22), November 7–11, 2022, Quebec, QC, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3528535.3565244

1 INTRODUCTION

Federated learning (FL) is a privacy-preserving machine learning
architecture that performs collaborative model training with large
amount of resource-constrained edge devices (e.g., IoT devices,
smartphones, etc.) in a distributed way, while keeping all the raw
data locally on each device [9, 33, 71]. With FL, diverse privacy-
sensitive domains have been drastically improved by the advance-
ment of AI power. Such domains include cancer diagnosis [31, 42],
human action detection [19], surveillance video analytics [3, 24, 79],
and clinical decision support for COVID-19 [15]. Google also de-
ployed a large-scale federated learning system over millions of
real-world devices to improve their keyboard query suggestion
model [77].

In a typical FL system, as depicted in Figure 1, all the edge de-
vices are organized around a central server, which orchestrates the
distributed model training in a round-by-round manner. Within
each round, the central server first selects a group of participants
from the large client pool to train the model. All selected devices
will download a shared model from the server, and train it with
their private-owned data. The participants are required to compute
the gradient updates timely before a server-specified deadline, and
then upload their local gradients back to the server. The server will
aggregate the gradients from all the devices into a synchronized
update to the global model, and initiate a new round of training
accordingly.

https://doi.org/10.1145/3528535.3565244
https://doi.org/10.1145/3528535.3565244

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

Server

Available?

R
ound i+1

Round i

Selected? Training
Drop out or

miss deadline?

Client Selection Aggregation

Configuration Execution Reporting

N N

Y
Y

N1 2

3

4

1
Devices check-in with server; then
the server selects a subset of clients

Model and training parameters
are sent to selected devices2

3
On-device training is executed; the model
gradients are reported if training succeeds

Server aggregates updates into the global
model; training moves to the next round

4

Clients

Figure 1: Standard Federated Learning Workflow. This figure is mod-

ified based on the FedScale paper [39].

Despite the success of FL across various domains, it poses critical
energy challenges to the edge devices, which are usually resource-
constrained with limited battery power. For each edge device, the
on-device model training involves intensive cooperation across
multiple hardware processing units, i.e. CPU, GPU, and memory
controller. This procedure is energy-consuming and usually burns
out the device’s battery in short time. Several works [36, 40, 68, 78]
propose to pursue better energy efficiency in FL, but most of them
approach this problem from the server’s perspective. For example,
AutoFL [36] reduces the overall energy consumption by selecting
a smaller group of participants in each round that are more likely
to complete the model training before deadline. Although such
design achieves global energy efficiency, it does not solve the energy
challenge for individual devices. SmartPC [40] proposes an energy-
aware training pace control solution based on CPU dynamic voltage
and frequency scaling (DVFS) for edge devices (e.g., slow down CPU
clock rate to achieve better energy efficiency). But this solution only
works for CPU devices, and cannot be extended to modern edge
devices that train neural networks jointly through GPU and CPU.
Meanwhile, SmartPC models a linear relation between the training
speed and CPU operational frequency. Such linear assumption
fails to generalize to modern edge devices with multi-axes DVFS
configurations, such as Nvidia Jetson AGX board [59], and the
actual relation between performance and hardware configurations
is highly-nonlinear (§2.2).

In this work, we present BoFL (Bayesian Optimized Federated
Learning), a system deployed on each FL client locally to achieve
energy-efficient training pace1 control over multi-axes of DVFS
configurations. As shown in Figure 2, model training performance,
i.e., training speed and energy efficiency, can be drastically affected
by different operational frequencies of CPU, GPU and memory
controller. A proper DVFS configuration may lead to 8× faster
training speed and 4× less energy consumption. However, the
‘configuration-to-performance’ correspondence is highly non-linear
and task-dependent (§2.2), thus, it is difficult to find and apply
good configurations directly. Different from works such as [40]
that builds explicit performance models on 1-D DVFS configura-
tions, BoFL treats the multi-dimensional performance metric on
1In this paper, training pace refers to the hardware processing speed, i.e, the operational
frequencies of CPU, GPU, and memory controller, when training neural networks.

Training Speed faster

Pareto Front

more efficient

8x

4x

En
er

gy
 e

ff
ic

ie
n

cy

GPU Frequency

CPU Frequency

Memory Frequency

Blackbox

Figure 2: Complicated relation between hardware frequencies and

model training performance (i.e. energy efficiency v.s. speed).

multi-axes DVFS space as a blackbox function, and searches for
the Pareto set with blackbox optimization tools. BoFL operates in a
fully online manner within limited rounds of a FL task, and achieves
near-optimal energy efficiency.

BoFL highlights three challenges to find the Pareto optimal
configurations over multiple various-length training rounds and
achieves optimal energy efficiency, as follows.

(C1) How to search for the set of Pareto optimal configurations in
terms of energy efficiency and training speed efficiently in an
online manner?

(C2) How to balance the effort between exploring the Pareto front
and exploiting local optimal configurations within limited
number of task rounds?

(C3) How to embed the non-trivial exploration algorithms with
time-critical training tasks, while satisfying multifaceted sys-
tem constraint and requirements?

To tackle these challenges, we design BoFL to operate in an explore-
then-exploit manner. In the limited rounds of FL tasks, BoFL first
explores the DVFS configuration space with a few trials, and then
exploits the remaining rounds with the best configurations ob-
served. Specially, BoFL strategically explores the large configu-
ration space with multi-objective Bayesian optimization (MBO)
framework, which searches for a set of Pareto trade-offs in the
energy-latency 2-D performance space efficiently in just a few steps.
The obtained Pareto optimal configurations can be exploited in later
rounds adaptively with respect to the various deadlines (C1). To
balance exploration and exploitation, we categorize the multi-round
FL task into three phases: two short phases for exploration and
one long phase for exploitation. We use hypervolume improvement
indicator (§4) to determine the length of exploration phases, so that
BoFL can construct near-optimal Pareto front within few rounds of
exploration (C2). We run MBO calculation and the model training
separately to avoid introducing extra latency overhead to the time-
critical FL tasks. To cope with the uncertainty caused by exploring
the whole configuration space (for example, BoFL may explore a
straggler configuration and exacerbate the deadline challenge), we
design a safe exploration algorithm to make sure every training
deadline is being met (C3). Overall, this paper makes the following
contributions:

(1) We depict the complex relation between hardware operational
frequencies and Neural Network (NN) training performance
through a comprehensive measurements with multiple network
models over different devices (§2.2).

BoFL: Bayesian Optimized Local Training Pace Control for Energy Efficient Federated Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

(2) We develop a blackbox optimization framework for the energy-
aware training pace control problem, and propose a MBO based
solution which achieves near-optimal energy efficiency in an
online manner (§3).

(3) We tailor-design the MBO workflow to embed it into the time-
critical FL tasks (§4), and implement the BoFL solution which
achieves both smart exploration and efficient exploitation, de-
spite multifaceted system constraints (§5).

(4) We perform comprehensive experiments over multiple neural
networks and devices to evaluate BoFL’s effectiveness. Evalu-
ation results suggest that BoFL can reduce more than 20% of
energy consumption compared to a performant baseline. The
energy overhead of BoFL is as low as 1.2% - 3.4% compared to
an optimal oracle target (§6).

The rest of the paper is organized as follows. In §2, we present
backgrounds about federated learning and Bayesian optimization.
We also depict the complexity of NN training performance with
different hardware frequency settings to motivate our solution. In
§3, we present the BoFL system model and optimization framework.
We present BoFL system workflow and design details in §4. §5 and
§6 present the implementation and evaluations of BoFL system. We
survey related literature in §7. Finally, §8 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Energy Efficient Federated Learning

Federated learning is a machine learning paradigm that enables
collaborative model training from a large pool of edge devices
with locally stored data. While a lot of works have been proposed
to achieve fast model convergence [35, 41, 44, 52], protect client
data privacy [2, 5, 53], defend against malicious attacks [6–8], and
address source of data bias [26, 81], not many works have been
presented to improve the energy efficiency of federated learning
tasks.

SmartPC [40] and AutoFL [36] are two representative works that
aim to optimize the energy efficiency of federated learning clients.
They both adopt a two-level energy optimization solution, where
(1) the cloud server, from global level, strategically selects a small
group of devices with high energy efficiency, and assigns them a
well-designed training deadline2. (2) The selected devices, from
local level, adapt their training paces (e.g., CPU frequencies) to min-
imize energy consumption and finish all training workloads before
the assigned deadline. While this two-level solution can success-
fully reduce energy usage, SmartPC and AutoFL both oversimplify
the complexity of local pace control on edge devices. They model
the training speed as a linear dependent variable of CPU or GPU
frequency, which is not accurate for modern edge devices where the
clock rates of CPU, GPU and memory controller jointly influence
the training performance in a highly nonlinear way (§2.2).

In BoFL, we focus on an efficient and effective local training pace
control algorithm that jointly controls hardware frequencies over
multiple axes to achieve energy-efficient federated learning. BoFL is
deployed on each edge device locally, and can smartly find the best
DVFS configurations for this hardware within a few training rounds.
BoFL assumes a cloud server which assigns a training deadline for

2The training deadline is referred to as execution target in AutoFL [36].

each training round. Any deadline assignment algorithm, either
strategically designing round deadlines [36, 40, 68, 78] or using a
static timeout value 3, as shown in the vanilla system design [9],
can function well with BoFL.

2.2 Complicated correspondence between DVFS

Configurations and Training Performance

Dynamic voltage and frequency scaling (DVFS) technique has been
widely applied in modern computers for energy efficient purpose,
especially for resource constrained mobile or edge devices. For
example, Nvidia Jetson AGX, a newly released edge device for
AI workloads, has a large discrete DVFS configuration space, i.e.,
CPU (0.4-2.3GHz), GPU (0.1-1.4GHz) and memory controller (0.2-
2.7GHz), which leads to more than 2K unique combinations.

In federated learning applications, it is important to make good
choices in the large configuration space to achieve high-performance
model training. For example, a good frequency choice can increase
the training speed by 8×, and energy efficiency by 4×. However,
it is non-trivial to find the good configurations due to the compli-
cated correspondence between the configuration and the model
training performance. Specially, we observe that the correspon-
dence has three-fold complexities through a measurement ex-
periment, which trains three representative neural networks (e.g.
ViT, ResNet50 and LSTM) on two different devices (Nvidia Jetson
AGX and Jetson TX2), as follows.

(1) Non-linearity. As shown in Figure 3(a), when the CPU clock is
set to 0.4 GHz, the training speed of the ViT model sees a dimin-
ishing improvement after 1.0 GHz GPU frequency. This is because
the job does not benefit from faster GPU clocks, when the slow
CPU becomes the bottleneck. The energy consumption curve in
Figure 3(b) presents an even higher complexity that it is neither
linear nor monotonic. When the GPU frequency is low, i.e., 0.7 GHz,
ViT achieves better energy efficiency with 0.4 GHz CPU clock than
that of 2.2 GHz CPU setting. While the GPU is configured to high
frequencies, i.e., 1.4 GHz, a slow CPU saves no more energy and
slows down the training speed by half. In general, we observe that
the training performance is influenced by the hardware frequencies
in a non-linear way. Different configurations may have different
bottlenecks over multiple axes, which leads to a complicated corre-
spondence.

(2) NN-model dependence. As shown in Figure 4(a), the execution
latencies of the three neural networks show different patterns as the
CPU frequency increases. The training speeds of ViT and ResNet50
almost remain the same, while LSTM reduces its execution latency
by half when increasing CPU clock rate from 0.6 GHz to 1.7 GHz. For
energy consumption as shown in Figure 4(b), we can see ResNet50
exhibits a steadily increasing curve, while LSTM shows a consis-
tently decreasing curve. In general, we observe that the relation

3There are two types of deadline definitions in the FL literature: (1) a training deadline
before which the clients must finish the gradient calculation; and (2) a reporting
deadline before which the server must receive the model updates from clients, which
includes the model training delay and parameter uploading latency. In BoFL, we
assume the first deadline model. For servers that only specify a reporting deadline,
BoFL can be easily extended to work well with a network bandwidth measurement
module that can infer its training deadlines from the reporting deadlines.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

0.3

0.4

Se
co

nd

(a) Execution Latency per Minibatch

0.9 1.0 1.1 1.2 1.3
GPU Frequencies (GHz)

5.0

5.5

6.0

Jo
ul

e

(b) Energy Consumption per Minibatch

CPU Frequency: 2.2 GHz
CPU Frequency: 0.4 GHz

Figure 3: Training performance of ViT

model with increasing GPU frequencies.

0.6

0.8

1.0

Se
co

nd

(a) Execuation Latency per Minibatch

0.7 0.9 1.1 1.3 1.5 1.7
CPU Frequencies (GHz)

5.0

7.0

9.0

Jo
ul

e

(b) Energy Consumption per Minibatch

ViT ResNet50 LSTM

Figure 4: Training performance of three

models with increasing CPU frequencies.

ViT ResNet50 LSTM

0.2 x

0.6 x

1.0 x

N
or

m
al

iz
ed

 P
er

fo
rm

ac
e

to
 T

X
2

TX
2

0.39
0.32

0.80

(a) Execution Latency

ViT ResNet50 LSTM

0.85

0.70

0.80

(b) Energy Consumption

Figure 5: Normalized training performance

on Jetson AGX compared to Jetson TX2.

between DVFS configurations and the training performance is NN-
model dependent. Different network models may be influenced by
the hardware configurations differently.

(3) Hardware dependence. Figure 5 shows the normalized training
performance of the three models on Jetson AGX compared to that of
Jetson TX2 (unit performance as the red line shows). Both devices
are configured with maximum operational frequencies. As a newer
version with stronger hardware and updated architectures, the
AGX board can significantly reduce the training time as well as the
energy consumption, compared to TX2. However, the performance
improvement does not apply uniformly to all three models. E.g.,
ResNet50 reduces its training time by 70% onAGX, while LSTM only
achieves 20% execution latency reduction. The above measurements
suggest that the correspondence between hardware configurations
and the training performance is hardware dependent. E.g., it is non-
trivial to estimate the performance curve of AGX board based on
measurements from TX2.

In summary, the correspondence between DVFS configurations and
neural network training performance is complicated and hard to
be accurately modeled in an explicit way. This motivates us to
model this correspondence as a blackbox function and search for
the good configurations with Bayesian optimization. Our solution
can search for good configuration points efficiently, and can be
generally applied to any NN model on any hardware.

2.3 Multi-objective Bayesian Optimization for

Blackbox Optimization Problems

The search for desirable DVFS configurations can be formulated as
an optimization problem involving a multi-dimensional blackbox
performance metric function (see §3.1 for details). A popular and
sample-efficient solution for such optimization problem is multi-
objective Bayesian optimization (MBO). MBO is an optimization
framework that leverages a probabilistic surrogate model to solve
optimization problems involving multiple blackbox objectives. The
goal of MBO is to construct an approximated Pareto set (see §3.1)
for those conflicting objectives, within a limited budget of function
evaluations.

MBO sequentially selects new points to evaluate the blackbox
function based on the surrogate model, and updates the model to
incorporate new observations. To decide which point to evaluate
next, MBO employs an acquisition function that specifies the utility

of evaluating a new point based on the surrogate model’s predictive
distribution. A good choice of the acquisition function helps to
balance the trade-off between exploration of unknown regions and
exploitation of the current best-performing ones [20, 69].

MBO has been extensively studied in the literature [22, 82], and
has enjoyed substantial successes in many applications, including
environmental engineering [48], structural design [51] and high-
energy physics [65].

We design BoFL with MBO embedded as the core algorithm
for balancing exploration and exploitation in the Pareto search.
The MBO workflow in BoFL as well as the choice of acquisition
function is carefully designed to better fit the MBO module with
other ingredients in the federated learning task. More details and
reasoning of BoFL system design can be found in §4.

3 PROBLEM DEFINITION AND

PRELIMINARIES

3.1 Problem formulation

Federated learning task: A federated learning task is initialized by
the server and trained with a pool of edge devices in a round-by-
round manner. At each round, the server selects a small group of
participants from the device pool and trains the machine learning
model for 𝐸 epochs4 of the Stochastic Gradient Descent algorithm
(SGD) with minibatch size of 𝐵 on the selected devices using their
private-owned data. The participants are required to finish the
gradient calculation before a server specified training deadline,
and then upload the model gradients back to the server where
the gradients get averaged into a shared model. The deadline is
calculated by the server as regards to the training data size and
computation capabilities of the selected participants in this round.
E.g., a training round using devices with stronger hardware or less
training data may be assigned a shorter deadline by the server. The
server usually forms different groups of devices for each round to
make sure the model is trained with heterogeneous data and thus
not biased, which leads to various deadlines for different rounds.

In BoFL, a federated learning task can be formally defined as
(𝐵, 𝐸,T, 𝑁) from the perspective of a local device, where (1) 𝐵 and
𝐸 represent the aforementioned global parameters, minibatch size
4The number of epochs is a hyperparameter that defines the number times that the
learning algorithm will work through the entire training dataset. In every FL round,
there are usually multiple epochs of of model training. Note that the epoch number 𝐸
is not the number of FL rounds.

BoFL: Bayesian Optimized Local Training Pace Control for Energy Efficient Federated Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

and training epoch number; (2) T is a list of training deadlines for
the rounds when this device is selected to participate; and (3) 𝑁
represents the number of minibatches of training data available
on this device. E.g., a client with 1k images, joining a federated
classifier training task of minibatch size 10, has 𝑁 = 1𝑘/10 = 100
in this case.

DVFS configuration space: Our goal is to find the optimal or near-
optimal device training pace for every round of the federated train-
ing that satisfies the corresponding training deadlines and mini-
mizes the total energy consumption. As mentioned in §2, the train-
ing pace can be controlled by configuring the operational frequen-
cies of the device’s CPU, GPU and memory controller. We thus
define the DVFS configuration space as X = F𝐶𝑃𝑈 × F𝐺𝑃𝑈 × F𝑀𝐶 ,
where the F(·) s represent the discrete operational frequencies of
the three hardware units (CPU, GPU and memory controller), re-
spectively.

Energy optimization problem: For any given federated learning task
on a specific device, the training speed and energy efficiency can
be characterized as functions of the DVFS configurations. Formally,
we define the two metrics as follows:

• T (x) is the execution latency to compute one minibatch of
the training data under configuration x;

• E(x) is the energy consumed on oneminibatch of data when
trained with configuration x.

x ∈ X is a three-element tuple encoding the operational frequencies
of CPU, GPU and memory controller. In our system, we define the
processing of a minibatch of data as a job. E.g., for an FL task that
trains a ResNet50 model, a job refers to the process of feeding a
minibatch of data (images) into the ResNet50 model and generat-
ing the gradient updates. We can always apply a different DVFS
configuration for the next job, but no more than one configuration
in the same job. We further define𝑊 = 𝐸 ×𝑁 , which is the number
of jobs in any single training round. The optimization problem can,
thus, be formally presented as follows:

min
x𝑖,𝑗 ∈X

|T |∑︁
𝑖=1

𝑊∑︁
𝑗=1

E(x𝑖, 𝑗)

s.t.
𝑊∑︁
𝑗=1

T (x𝑖, 𝑗) ≤ T𝑖 ∀ 1 ≤ 𝑖 ≤ |T|

(1)

The variable x𝑖, 𝑗 is the DVFS configuration applied in the 𝑖-th
training round on the 𝑗-th job. The optimization goal of BoFL is to
minimize the overall energy consumption during the |T| rounds of
training by carefully selecting DVFS configurations for every job,
while satisfying the unique training deadline for each round.

3.2 Solution Sketch with MBO Searched Pareto

Set

While the whole configuration space is large, the optimizers of Eqn.
(1) can be chosen from a small Pareto set, defined as the set of
Pareto optimal points in X, in terms of the two metric functions, E
and T . More formally, letM(x) = (E(x),T (x)) be a two-objective
function defined on X, a point x1 ∈ X is Pareto dominated by
another point x2 ∈ X, iff E(x1) ≥ E(x2) and T (x1) ≥ T (x2),

… … …

Figure 6: BoFL Workflow

and either E(x1) > E(x2) or T (x1) > T (x2). We denote this
by M(x1) ≺ M(x2). A point is Pareto optimal if it is not Pareto
dominated by any other point. We use P ⊆ X to denote the set of
Pareto optimal points for function M. The images of the Pareto
optimal points P𝑓 := M(P) are called the Pareto front.

It is intuitive that the variable space in Eqn. (1) can be reduced
from X to P without affecting the solution: any DVFS configuration
outside the Pareto front could be replaced by its dominant point
in P to further minimize the energy objective without causing
extra delay. Once the Pareto set P is given, it is straightforward to
reformulate Eqn. (1) as an integer linear programming problem,
which can be solved efficiently.

However, searching for the Pareto set P is a challenging task since
the twometric E and T are blackbox functions that are expensive to
evaluate. Due to the computational cost for configuration evaluation
and the deadline requirement for training tasks, it is crucial to obtain
an approximated Pareto set within limited rounds. In BoFL, we use
multi-objective Bayesian optimization (MBO) as a sample-efficient
method to search for the Pareto optimal points with just a few trials,
and get near-optimal solution for Eqn. (1).

4 BOFL SYSTEM DESIGN

4.1 Overview

As shown in Figure 6, BoFL operates in three phases spanning all
the training rounds as follows:
(1) Safe random exploration samples and tries candidates from

the configuration space uniformly to collect the first group of
observations for MBO model initialization. It will continue for
one or a few rounds at the beginning of the FL task. We design
a safe exploration algorithm to make sure the training deadlines
are being satisfied, and the observed metrics (e.g., latency and
energy consumption) are being accurate.

(2) Pareto front construction tries on the candidates suggested
by MBO. This phase will continue for several rounds (e.g., 3 to
5 rounds) to search for the Pareto optimal configurations. The
MBO update is separated from the model training, using the
configuration and reporting time window as shown in figure 1,
to minimize system overhead generated by co-locating training
and MBO calculation at the same time. To accelerate Pareto
searching, the MBO algorithm will propose multiple candidates
(in batched form) to be explored for the next round.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

Round Start

No

Yes

Round End

: The list of
configurations to be

explored

Run all remaining
jobs with

Run remaining jobs
with best configurations

observed so far.

Run jobs with for at
least seconds.

Record and
to observations.

Yes

No

Remaining jobs?

Success

Fail

Deadline guardian check

Figure 7: Safe exploration algorithm

(3) Exploitation is a long phase, which usually takes more than
90% of the time in a FL task. In this phase, we solve Eqn. (1)
with the approximated Pareto optimal points constructed from
the second phase. The energy consumption is thus minimized
with the sweet spot configurations.

In the rest of this section, we present the design details of the three
operational phases in §4.2, §4.3 and §4.4, respectively.

4.2 Safe Random Exploration

The goal of the random exploration phase is to collect some starting
points, uniformly from the space, for the MBO model to estimate
the objective functions. As we sample the starting points randomly
over the whole space, it is inevitable to select some bad DVFS
configurations that introduce longer delays than we expect, which
exacerbates the challenge to meet every training deadline in this
phase. We design a safe exploration algorithm, as depicted in figure
7, to ensure the training deadlines met. We present the detailed
design decisions as follows.

Sample selection: We sample a small group (e.g., 1% of the whole
space) of starting points, uniformly distributed over X, using a
quasi-random number generator. This uniform exploration strategy
helps the Bayesian model avoid making wrong assumptions over
the sample space.

Instead of trying the starting points from the very beginning, we
manually choose xmax as the first DVFS configuration to be applied
in the FL task, where

xmax = (max(F𝐶𝑃𝑈),max(F𝐺𝑃𝑈),max(F𝑀𝐶))
refers to the DVFS configuration with the highest operational fre-
quencies on all three processing units (e.g., CPU, GPU and the
memory controller). xmax is a configuration with maximum pro-
cessing capability where the training can be quickly finished. After
T (xmax) is observed, xmax could be used as a guardian configura-
tion, so that we can always speed up our pace to xmax in the middle
of any exploration round to catch the training deadline before it is
too late.

Workload assignment: In each exploration round, we can try multi-
ple DVFS configurations through the𝑊 training jobs. It is important
to assign a balanced workload to each configuration. A transient
workload (e.g., trying the configuration for only one job) will lead

to the execution being finished before the hardware voltage gets
stable, and will generate large energy measurement error. Contrar-
ily, a heavy workload prolongs exploration phase, and squeezes the
exploitation phase.

In practice, we define 𝜏 as a reference measurement duration
(e.g., 5s). BoFL will keep assigning a new job to configuration x
until it has been explored for at least 𝜏 seconds. When the current
job finishes and the configuration has been measured for more than
𝜏 seconds, BoFL will switch to explore the next candidate point.

Deadline guardian strategy: As we randomly sample configurations
to explore in the first phase, we will inevitably meet some bad points
that delay our training progress, and exacerbate the challenge to
catch the training deadlines. In BoFL, we make sure the deadline
requirement never violated by using the known guardian configura-
tion xmax, as mentioned in §4.2. xmax is tested first so that T (xmax)
is known before any exploration point is tried. Before exploring an
unknown configuration x, we run a quick deadline guardian check
first to see if the remaining jobs could still be finished with xmax,
even if the 𝜏 seconds of exploration on x fails to finish any job. For-
mally, let𝑊remain and 𝑇remain represent the number of remaining
jobs and the remaining time before deadline when configuration x
is about to be explored, the deadline guardian check criterion could
be expressed as follows,

𝑇remain − 𝜏 ≥𝑊remain × T (xmax) (2)

Configuration x would be explored only if Eqn. (2) satisfies. In
case Eqn. (2) fails, configuration exploration will terminate in this
round, and all the remaining jobs will be executed under configura-
tion xmax. The random exploration phase will continue for several
rounds until all the uniformly sampled starting points are explored.

Last round exploitation: In the last round of the random exploration
phase, we may finish exploring all the starting points early, leav-
ing some jobs not executed. While we can play safe to apply xmax
on the remaining jobs, this method may consume more energy
than needed, as E(xmax) could be high. In BoFL, we apply an ex-
ploitation strategy to finish the last random exploration round with
observed configurations. We calculate the best profile of configu-
rations from the observed configurations to minimize energy con-
sumption, while satisfying the deadline requirement. More details
of the exploitation algorithm will be presented in §4.4.

4.3 Pareto Front Construction

The Pareto front construction phase is the main module that we
apply MBO algorithms to search for Pareto optimal configurations.
As shown in Figure 6, this phase continues for several rounds with
the following two components.
(1) A MBO module that runs between two consecutive training

rounds. It updates the function estimation with the observations
from the previous rounds, and provides a batch of suggested
configurations to explore for the next round.

(2) A FL task round in which the suggested configurations are
explored. It ensures to satisfy the corresponding deadline with
the safe exploration algorithm as presented in §4.2.

We present the reasoning and design decisions of the Pareto front
construction phase as follows.

BoFL: Bayesian Optimized Local Training Pace Control for Energy Efficient Federated Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Separation of MBO computation and model training: The MBO cal-
culation involved in Pareto searching is nontrivial, and usually
takes several seconds to complete. Running the MBO module and
training the learning task simultaneously can result in unexpected
running-time overhead, and increase the risk of missing deadline.
Alternatively, in BoFL, the MBO module is executed only during
the configuration and reporting time window as shown in Figure 1,
while the module will idle during the training time. Such separation
will effectively minimize the running-time influence of the MBO
module on the training task.

MBO prior function: Without the loss of generality, in this project,
two objective functions T and E are modeled by two independent
Gaussian processes [64], each of which has a prior distribution with
mean function𝑚(x) = 0 and kernel function 𝑘 (x, x′) = 𝐶5/2 (∥x −
x′∥2). Here 𝐶5/2 (∥x − x′∥2) is the widely-used Matérn-5/2 kernel
function [64] that can capture a large variety of function properties.

Pareto front approximation with hypervolume improvement: Recall
that the goal of our MBO algorithm is to identify a finite approx-
imated Pareto front. To measure the quality of an approximated
Pareto front, hypervolume indicator (HV) is the most commonly
used metric in MBO. It quantifies the hypervolume of the region
in the performance space that is dominated by the approximated
Pareto front and bounded from below by a reference point. Mathe-
matically, given an approximated Pareto front

P′ = {p𝑖 = M(x𝑖) : x𝑖 ∈ X, 𝑖 = 1, . . . , 𝑛} (3)

and a reference point r ∈ R2, the hypervolume indicator HV(P′, r)
is defined as

HV(P′, r) =
∫
R2
1H(P′,r) (z)𝑑z, (4)

where H(P′, r) := ∪𝑛
𝑖=𝑖

{z ∈ R2 : r ⪯ z ⪯ p𝑖 } is the region
dominated by P′ and bounded from above by r. The higher the
HV(P′, r) is, the better the P′ approximates the true Pareto front
P. The reference point can be selected as the combination of the
worst performances, for T and E, we observed in phase 1, i.e.,
r = (max(E(x)),max(T (x′))),∀x, x′ ∈ X̂, where X̂ is the set of
starting points explored in the random exploration phase.

To determine how much the hypervolume would increase if a
set of new points Q = {q𝑗 = M(x′

𝑗
) : x′

𝑗
∈ X, 𝑗 = 1, . . . ,𝑚} is

added to the current Pareto front approximation P′, we define the
hypervolume improvement (HVI) of Q with respect to P′ as

HVI(Q; P′, r) = HV(Q ∪ P′, r) − HV(P′, r). (5)

EHVI acquisition function: In general, the performancemetricM(x)
at any unobserved point x ∈ X is unknown in the blackbox opti-
mization. However, the surrogate model in the Bayesian framework
provides a posterior distribution P(M(x) |D) for any unobserved
point x ∈ X, where D is the set of all historical observations. This
allows one to define and compute the expected hypervolume im-
provement (EHVI) acquisition function, conditioned on historical
observationsD, current approximated Pareto front P′, and reference
point r:

𝛼EHVI (x|D, P′, r) = EM(x)∼P(· |D) [HVI({M(x)}; P′, r)] . (6)

The algorithmwill select the point with maximal EHVI to explore in
the next iteration. In practice, the 2-D EHVI value can be computed
efficiently calculated in O(|D| log(|D|)) time complexity [76].

Batch Selection Strategy: The classical formulation of EHVI (Eqn. 6)
proposes only a single point to evaluate. However, practically, the
time scale of each round in the Pareto front construction phase in
BoFL allows the system to explore multiple configurations within
one round. Therefore, the MBO algorithm is required to propose a
batch of configurations to evaluate in the next round.

Note that the definition of EHVI can be extended to a batch
setting, by simply replacing the input point x by a batch of points,
and the expectation is taken over the posterior distribution on the
entire batch. However, finding the optimal batch based on such
acquisition function will suffer from the high computational cost,
especially when the batch size is large [14].

In BoFL, inspired by [14, 21], we adopt a batch selection strategy
to select 𝐾 points for the next batch in a sequential greedy fashion
with the following three steps:
(1) Choose the next point x to be explored based on the acquisition

function (Eqn. 6);
(2) Fantasize the observation on x from our surrogate model, i.e.

M̂(x) = E[M(x) |D], and update posterior estimation accord-
ingly;

(3) Repeat step (1) and (2) until 𝐾 configurations are selected.
Our sequential greedy batching strategy can be easily implemented
and scales well for large batch sizes.

MBO batching size selection: In every run of the MBO model, we
generate a batch of 𝐾 = 𝑇𝑎𝑣𝑔/𝜏 suggestions, which roughly esti-
mates the average number of explorations in each round. 𝑇𝑎𝑣𝑔 here
refers to the average FL round duration that we have observed in
the safe random exploration phase. In practice, we can also set an
upper threshold for the MBO batch size (e.g., 10 points) to avoid the
MBO calculation running too long, and affecting the proceeding
training rounds.

MBO stopping condition: The Pareto construction phase will con-
tinue until the following stopping condition is satisfied: when at
least a certain number of configurations (e.g. 3% of the whole space)
are explored and the EHVI value increase is less than a threshold
(e.g., 1%). This stopping criterion ensures that the MBO module
has explored enough configurations before stopping and does not
struggle too much for small improvements.

Training round execution details: After the MBO module generates
a batch of 𝐾 suggestion points, they will be explored in the proceed-
ing training round. As each round has its unique deadline which is
unknown beforehand, BoFL may not have enough time to explore
all the 𝐾 configurations when the deadline length is short. Mean-
while, it is also possible that there are jobs remained after the 𝐾
configurations are all explored.

In the Pareto front construction phase, we still follow the safe
exploration algorithm (Figure 7) to explore the Bayesian suggestion
points. With deadline guardian checking, we can drop extra sug-
gestions to make sure the deadlines are caught. In case there are
remaining jobs, we exploit the best profile of configurations we
have observed to minimize energy consumption (§4.4).

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

Jetson AGX Jetson TX2

CPU 8-core ARM v8.2 2-core Nvidia Denver2 +
4-core ARM Cortex-A57

Frequencies 0.42GHz→ 2.26GHz

(25 steps)

0.34GHz → 2.03GHz

(12 Steps)

GPU 512-core Volta GPU 256-core Pascal GPU

Frequencies 0.11GHz→ 1.38GHz

(14 steps)

0.11GHz → 1.30GHz

(13 steps)

Memory 32GB 256-bit LPDDR4x 8GB 128-bit LPDDR4

Frequencies 0.20GHz→ 2.13GHz

(6 steps)

0.41GHz → 1.87GHz

(6 steps)

Table 1: BoFL Testbed Hardware Specifications

4.4 Exploitation

After the Pareto construction phase, we have explored sufficiently
many DVFS configurations, from which an approximated Pareto set
P
′
can be selected. In the exploitation phase, we use P

′
as a surrogate

of the actual Pareto set P to solve the energy minimization problem
in Eqn. (1).

Although we reduced the input space from X to P
′
, the optimiza-

tion problem of Eqn. (1) is still nontrivial to solve. In general, the
Pareto front curve, induced by P

′
, is not convex, and consequently,

the minimizers of Eqn. (1) could be a combination of multiple con-
figurations. In BoFL, we solve the Integer Linear Programming (ILP)
problem with branch-and-bound algorithm [54], which estimates
the lower and upper bounds of the search space regions efficiently,
and is widely applied in many discrete optimization problems.

As mentioned in §4.2 and §4.3, the exploitation algorithm is
also applied in the exploration phase when the candidates are fully
explored, but the jobs are not finished. In such cases, we build Pareto
front based on existing observations, and solve the minimizers on
the remaining jobs before the training deadline.

5 IMPLEMENTATION

5.1 Hardware Testbed

We implement BoFL on two devices, Nvidia Jetson AGX [59] and
Nvidia Jetson TX2 [58]. BoFL controls the CPU, GPU and mem-
ory controller frequencies on these testbeds whose specifications
are shown in Table 1. E.g., The CPU of Jetson AGX has a clock
frequency range of 25 discrete steps from 0.42GHz to 2.26GHz,
and the GPU of Jetson TX2 has 13-stepped operational frequencies
ranging from 0.11GHz to 1.30GHz. Overall, the DVFS configuration
spaces of Jetson AGX and Jetson TX2 have 2100 and 936 unique
configurations, respectively.

5.2 Software Implementation

Figure 8 depicts an overview of BoFL’s software implementation.
We implement BoFL with Python in around 2K lines of code. It has
five main modules as follows.

FL task executor 1 : The FL task executor takes a deep learning
model (e.g., ResNet50) and executes the training loops with its local
data. It follows the training parameters, e.g., minibatch size and
number of epochs, specified by each FL task. We implement this

FL Task Executor

DVFS
Controller

Optimization
Solver

MBO Engine

Observed
Performance

Data

Performance
Observer

BoFL
Next-step

suggestions

Optimal
configurations

Control DVFS
configurations

Observe

Exploration
Path

Exploitation
Path

Figure 8: BoFL’s Implementation on Clients

module based on Pytorch-1.10 [60], and it could be easily gener-
alized to other machine learning platforms, such as Tensorflow
[1]and MXNet [11].

Performance observer 2 : We implement the performance observer
to read the execution latency T (x) and energy consumption E(x)
when any DVFS configuration x is applied. We use CUDA event
recording APIs5 to accurately measure the execution latency. We
read the energy consumption with the built-in INA3221 power
sensor [29], which can be easily accessed through the sysfs in
Linux kernel.

DVFS controller 3 : TheDVFS controller implements themainwork-
flow in §4 and directly actuates the hardware frequencies. During
exploration, it takes the Bayesian suggestions as the next-step ex-
ploration configurations. During exploitation, it actuates the opera-
tional frequencies according to the optimization results (solution for
the ILP as shown in Eqn. 1). We modify the hardware frequencies
by directly writing into the corresponding sysfs kernel files6.

Optimization solver 4 : The optimization solver solves the ILP prob-
lem, Eqn.(1), with observed Pareto optimal configurations. We build
this module with Gurobi optimization engine [25], which imple-
ments the branch-and-bound algorithm and solves Eqn. (1) effi-
ciently, i.e., within 20ms.

MBO engine 5 : Our MBO engine is built on top of Trieste [67]
which is a Bayesian optimization library implemented in Python.
Trieste implements the standard BO priors, as well as a wide range
of acquisition functions and batching rules, including the EHVI
function and sequential greedy rule adopted by BoFL, as discussed
in §4. The MBO engine is triggered before each training round in
the Pareto construction phase to update the posterior estimation
of T (·) and E(·), and generates the next-step suggestions for the
DVFS controller, 3 , to achieve efficient exploration.

6 EVALUATION

6.1 Methodology

Datasets & Neural Network Models. We evaluate BoFL with three
different federated learning tasks spanning both computer vision
(CV) and natural language processing (NLP) applications. The three
tasks cover three major types of neural network models, i.e., CNN,
RNN and Transformer, as follows:
5torch.cuda.Event() and torch.cuda.synchronize().
6e.g., writing into "/sys/devices/*/devfreq/*/min(max)_freq" to modify the cor-
responding GPU frequencies.

BoFL: Bayesian Optimized Local Training Pace Control for Energy Efficient Federated Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

650

700

750

800

850

900

E
n

er
gy

C
on

su
m

ed
(J

)

0 5 10 15 20 25 30 35 40
Round Number

40

60

D
D

L
(s

)

Performant

Oracle

BoFL

Phase 1

Phase 2

Phase 3

(a) CIFAR10-ViT

900

1000

1100

E
n

er
gy

C
on

su
m

ed
(J

)

0 5 10 15 20 25 30 35 40
Round Number

50

75

D
D

L
(s

)

Performant

Oracle

BoFL

Phase 1

Phase 2

Phase 3

(b) ImageNet-ResNet50

800

900

1000

E
n

er
gy

C
on

su
m

ed
(J

)

0 5 10 15 20 25 30 35 40
Round Number

50

75

D
D

L
(s

)

Performant

Oracle

BoFL

Phase 1

Phase 2

Phase 3

(c) IMDB-LSTM

Figure 9: Energy consumption for the first 40 rounds of FL training on AGX testbed with T𝑚𝑎𝑥 /T𝑚𝑎𝑥 = 2

650

700

750

800

850

900

E
n

er
gy

C
on

su
m

ed
(J

)

0 5 10 15 20 25 30 35 40
Round Number

50

100

D
D

L
(s

)

Performant

Oracle

BoFL

Phase 1

Phase 2

Phase 3

(a) CIFAR10-ViT

900

1000

1100

E
n

er
gy

C
on

su
m

ed
(J

)

0 5 10 15 20 25 30 35 40
Round Number

50

100

150

D
D

L
(s

)
Performant

Oracle

BoFL

Phase 1

Phase 2

Phase 3

(b) ImageNet-ResNet50

800

850

900

950

1000

E
n

er
gy

C
on

su
m

ed
(J

)

0 5 10 15 20 25 30 35 40
Round Number

50

100

150

D
D

L
(s

)

Performant

Oracle

BoFL

Phase 1

Phase 2

Phase 3

(c) IMDB-LSTM

Figure 10: Energy consumption for the first 40 rounds of FL training on AGX testbed with T𝑚𝑎𝑥 /T𝑚𝑎𝑥 = 4

(1) CIFAR10-ViT trains Vision-Transformer model [17] (ViT) for
image classification on the CIFAR10 dataset [38]. The CIFAR10
dataset contains 32𝑝 × 32𝑝 color images of 10 different classes.
This dataset is widely applied in image classification tasks for
its lightweight.

(2) ImageNet-ResNet50 trains ResNet50 model [27] on ImageNet
dataset [16] for image classification. Compared to CIFAR10, Im-
ageNet contains image data of more diverse classes and higher
resolutions. When training with ImageNet, the images are usu-
ally cropped to 224𝑝 ×224𝑝 for normalized and convenient data
loading.

(3) IMDB-LSTM trains LSTM-RNN model [28] for text semantic
analysis with IMDB movie review dataset [47]. This dataset
contains more than 50𝐾 movie reviews with ground truth bi-
nary semantic labels, i.e., positive or negative. It is a widely
used dataset for NLP model training.

CIFAR10-ViT ImageNet-ResNet50 IMDB-LSTM

𝐵 32 8 8
𝐸 5 2 4

𝑁
AGX 40 90 40
TX2 15 30 20

|T | 100

T𝑚𝑖𝑛
AGX 37.2s 46.9s 46.1s
TX2 36.0s 49.2s 55.6s

T𝑚𝑎𝑥 / T𝑚𝑖𝑛 {2.0, 2.5, 3.0, 3.5, 4.0}
Table 2: Federated Learning Task Specifications

Experiment Setup & FL Task Specifications. To evaluate the per-
formance of BoFL, we train the above three FL tasks on the two

testbeds, i.e., Jetson AGX and Jetson TX2, each for 100 rounds. Ta-
ble 2 presents the detailed specifications of the three FL tasks. For
each task, we first specify its global parameters 𝐵 and 𝐸, repre-
senting the minibatch size and number of training epochs in each
round. We then load part of the datasets into the two devices as
their private training data. As mentioned in §3, 𝑁 refers to the
number of minibatches. For example, we load 40 batches of data,
each containing 32 images into the AGX device for task CIFAR10-
ViT. Finally, We sample 100 deadlines uniformly from the range
[T𝑚𝑖𝑛, T𝑚𝑎𝑥]. T𝑚𝑖𝑛 is the execution latency to finish one round of
training when the device is configured with maximum operational
frequencies, e.g., T𝑚𝑖𝑛 = T (x𝑚𝑎𝑥) ×𝑊 . The T𝑚𝑖𝑛 values in Table
2 are experiment measurements on the two testbeds when x𝑚𝑎𝑥

is applied. A FL task can be finished on a device in time only if
the assigned deadline is no less than T𝑚𝑖𝑛 . T𝑚𝑎𝑥 is the deadline
sampling upper bound. To evaluate the performance sensitivity of
BoFL with different range of deadlines, we select a wide spectrum
of T𝑚𝑎𝑥 ranging from 2.0 × T𝑚𝑖𝑛 to 4 × T𝑚𝑖𝑛 .

Comparison Targets. To evaluate the effectiveness of BoFL, we
compare it with two other designs as follows:
(1) Performant. The Performant design is the default DVFS

configuration for real-time tasks. It turns all the hardware units
into maximum operational frequencies, i.e., x𝑚𝑎𝑥 , to maintain
stable performance, and make sure the deadlines will not miss.
We compare BoFL with the Performant design to show that
our algorithm can significantly reduce the energy consumption.

(2) Oracle. In the Oracle design, we profile T and E over the
whole configuration space offline, and only run exploitation
over the FL training rounds to achieve optimal energy usage.
Note that Oracle can not be achieved in practice as it requires

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

0.18 0.21 0.24 0.27 0.30

Execution Latency per minibatch (s)

3.5

4.0

4.5

5.0

E
n

er
gy

C
on

su
m

p
ti

on
p

er
m

in
ib

at
ch

(J
)

Bet
te

r

Unexplored Configurations

BoFL Explorations

BoFL Pareto Front

Actual Pareto Front

(a) CIFAR10-ViT

0.25 0.30 0.35 0.40 0.45

Execution Latency per minibatch (s)

4.8

5.4

6.0

6.6

7.2

E
n

er
gy

C
on

su
m

p
ti

on
p

er
m

in
ib

at
ch

(J
)

Bet
te

r

Unexplored Configurations

BoFL Explorations

BoFL Pareto Front

Actual Pareto Front

(b) ImageNet-ResNet50

0.30 0.35 0.40 0.45

Execution Latency per minibatch (s)

4.8

5.4

6.0

6.6

7.2

E
n

er
gy

C
on

su
m

p
ti

on
p

er
m

in
ib

at
ch

(J
)

Bet
te

r

Unexplored Configurations

BoFL Explorations

BoFL Pareto Front

Actual Pareto Front

(c) IMDB-LSTM

Figure 11: A comparison between BoFL searched Pareto fronts and the actual Pareto fronts on AGX testbed.

long-lasting offline profiling. We compare BoFL with the Ora-
cle design to show that we achieve near-optimal energy effi-
ciency with little regret.

6.2 BoFL Energy Efficiency

We evaluate the energy efficiency of BoFL as shown in Figure 9
and 10. We plot the energy consumption of BoFL, as well as the
two baselines, for the first 40 training rounds. The deadlines for
each round are presented together with the energy usage. We also
highlight the three algorithm phases of BoFL to better illustrate
the exploration and exploitation trade off in our solution.

Figure 9a depicts our experiment results for CIFAR10-ViT task
measured on the AGX testbed. As the figure shows, BoFL can re-
duce the overall energy consumption substantially comparing to
the Performant baseline, and achieves pretty close energy usage
comparing to the Oracle target in the exploitation phase. BoFL
takes the first 10 training rounds (phase 1 & 2) to explore the con-
figuration space, and runs exploitation in all the remaining rounds.
BoFL outperforms Performant consistently over the whole train-
ing process, except one round in phase 1 when BoFL inevitably
meet some bad configurations during random exploration. Com-
paring to the Oracle design, it is clear that the two energy curves,
of BoFL and Oracle, almost coincide in the exploitation phase.
The major energy overhead comes from phase 1 and 2 when BoFL
focuses on the exploration but not energy optimization. Note that
in practice, a FL model may take 500 ∼ 10000 rounds to converge
[33]. An exploration phase of around 10 rounds generates negligible
overhead comparing to that of the dominantly long exploitation
phase.

Overall, BoFL reduces energy consumption by 22.3% compared
with Performant and generates 3.48% energy overhead compared
to Oracle for the experiment as shown in Figure 9a. Similar re-
sults can be observed from all remaining plots in Figures 9 and 10.
Comparing Figure 9 and Figure 10, it is clear the longer deadlines
reduce the spikes in the energy curves, as it provides more space to
pace down for energy optimization. We will present more results to
showcase how deadline length influences the performance of BoFL
in §6.4.

6.3 BoFL Pareto Construction

In Figure 11, we present the Pareto front constructed by BoFL (as
shown in blue squares), as well as the actual Pareto front derived
from offline profiling (as shown in red stars). It is clear that BoFL

CIFAR10-ViT ImageNet-ResNet50 IMDB-LSTM

Round # Exp # Pareto # Exp # Pareto # Exp # Pareto

1 9 1 17 2 16 1

2 2 0 4 0 5 0

3 8 1 10 2 5 0

4 2 0 10 0 10 3

5 10 1 10 5 10 4

6 6 4 7 2 10 3

7 10 2 10 2 10 3

8 7 2

9 8 6

10 8 3

Total 70 20 68 13 66 14

Table 3: The number of Explorations and searched Pareto points

for each round in the first two phases. Red numbers are for the

safe random exploration phase. Blue numbers are for the Pareto

construction phase. E.g., In the first round of CIFAR10-ViT task, BoFL

is in the random safe exploration phase. It explores 9 configurations
with one of them being in the ultimate Pareto front.

can successfully find a close approximation to the actual Pareto
front over all three tasks. We further plot all remaining BoFL explo-
rations in blue circles, and the unexplored configurations in gray
dots. As the figure shows, BoFL makes most of its explorations
around the Pareto front while seldom trials in the less performant
area, because our solution can smartly search the configuration
space with Bayesian optimized suggestions and skip a lot of sub-
optimal points. Note that we only plot a small part of the whole
configuration space around the Pareto front for presentation clar-
ity. There are much more sub-optimal and unexplored points than
those as shown in Figure 11. In our experiments, the Pareto front
can be efficiently constructed after exploring just 3% of the whole
configuration space.

We further present a walkthrough example of how BoFL ex-
plores the space and searches for the Pareto optimal configurations,
as shown in Table 3. For the CIFAR10-ViT task, BoFL first randomly
searches the whole configuration space for 4 rounds and explores 21
different configurations. After that, BoFL switches into the Pareto
construction phase and starts taking exploration suggestions from
the MBO module. The second phase continues for 6 rounds and ex-
plores 49 points before the ending criteria (§4.3) is satisfied. During
the whole exploration process, 70 configurations are explored, in
which 20 of them constitute the Pareto front, i.e., the blue squares
as shown in Figure 11a. It can be easily observed that most of Pareto

BoFL: Bayesian Optimized Local Training Pace Control for Energy Efficient Federated Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

0

20

(a) CIFAR10-ViT

0

2

(b) CIFAR10-ViT

0

20

Im
p

ro
ve

m
en

t
C

om
p

ar
ed

to
P
e
r
f
o
r
m
a
n
t

(%
)

(c) ImageNet-ResNet50

0

2

R
eg

re
t

C
om

p
ar

ed
to

O
r
a
c
l
e

(%
)

(d) ImageNet-ResNet50

2.0x 2.5x 3.0x 3.5x 4.0x
0

20

(e) IMDB-LSTM

2.0x 2.5x 3.0x 3.5x 4.0x
0

2

(f) IMDB-LSTM

Normalized Maximun Deadline Length (Tmax/Tmin)

Figure 12: BoFL’s effectiveness with different deadline length.

front points, i.e., 18 out of 20, are searched in the second phase,
because the Bayesian optimization algorithm focuses on exploring
more promising regions and can search for Pareto front more effi-
ciently compared to random sampling. Similar patterns can also be
observed in the other two tasks, as shown in Table 3.

6.4 Sensitivity to Deadline Length

We evaluate how deadline length influences BoFL’s effectiveness as
follows. We run 6 set of experiments with different ranges of dead-
line length, i.e., T𝑚𝑎𝑥 / T𝑚𝑖𝑛 ∈ [2, 4], as shown in Table 2, measuring
the following two metrics to evaluate BoFL’s performance:

(1) Improvement compared to Performant: A metric repre-
sents how much energy can be reduced by BoFL compared to
Performant, i.e., 1 − BoFL energy usgae

Performant energy usgae .
(2) Regret compared to Oracle. A metric represents how much

energy overhead is generated by BoFL compared to Oracle,
i.e., BoFL energy usgae

Oracle energy usgae − 1.

The evaluation results are presented in Figure 12. As the figure
shows, BoFL’s improvement compared to Performant steadily
increases as the FL tasks are assigned with longer deadlines. As the
deadlines are getting longer, BoFL has larger optimization space
for pace control, it can train the model slower to benefit from
less energy consumption, which explains the increasing curve. As
the deadlines are getting longer, BoFL’s strategy will gradually
converge to choosing the most energy-efficient configuration, i.e.,
the bottom point in the Pareto front as shown in figure 11, which
makes the overall energy consumption stable. Overall, BoFL can
reduce energy consumption by 20.3% ∼ 25.9% compared to the
Performant baseline.

As the deadline increases, BoFL’s regret compared to Oracle
steadily decreases. When the deadlines are short, BoFL tends to
spend more time in on exploration, which generates more energy
regret. As shown in Figure 9a and Figure 10a for CIFAR10-ViT task,
BoFL explores 10 rounds before exploitation when T𝑚𝑎𝑥

T𝑚𝑖𝑛
= 2, while

only explores 6 rounds when T𝑚𝑎𝑥

T𝑚𝑖𝑛
= 4. The reason under the hood

is that longer deadlines allow BoFL to explore more configurations
in a single round, which leads to a well constructed Pareto within
fewer rounds. Overall, BoFL generates energy consumption regret
by 1.2% ∼ 3.4% compared to the Oracle target.

TX2 AGX
0

2

4

6

8

E
xe

cu
ti

on
L

at
en

cy
(s

)

TX2 AGX
0

15

30

45

60

E
n

er
gy

C
on

su
m

ed
(J

)

(a) MBO overhead per round.

CIFAR10 ImageNet IMDB
0.0

0.2

0.4

0.6

E
n

er
gy

O
ve

rh
ea

d
G

en
er

at
ed

by
M

B
O

(%
) TX2

AGX

(b) Overall energy overhead.

Figure 13: Overhead of the MBO module

6.5 MBO Module Overhead

In BoFL, we use MBO to smartly generate the next-step exploration
points. However, calculating these suggestions does not come for
free. In the rest of this section, we evaluate the overhead of the MBO
module in terms of two metrics: (1) MBO calculation latency, and
(2) MBO energy consumption. We present the evaluation results in
Figure 13.

As shown in figure 13a, the MBOmodule may take 6 ∼ 9 seconds
to update its estimation and generate next-step suggestions. Note
that the MBO calculation happens outside the time critical model
training and introduces zero overhead to the FL workloads. In
practice, the Bayesian optimization calculation can be co-located
when the client is sending or receiving models from the server,
which usually takes 10 ∼ 20 of seconds7, and is long enough for
the MBO calculation. For weak devices that takes longer time to
update their Bayesian models, we can always speed up the MBO
calculation by reducing its suggestion batch size.

As Figure 13a depicts, one round of MBO calculation usually
consumes 50 ∼ 70 Joule energy, which is much smaller than that
of model training, which usually takes 600 ∼ 1200 Joule, as shown
in Figures 9 and 10. As MBO only happens a few times during the
Pareto construction phase, the overall energy overhead generated
by MBO is as small as 0.4% ∼ 0.7%, as presented in Figure 13b.

7 RELATEDWORK

Federated learning. Federated learning brings collaborative intel-
ligence into multiple domains, including health care [12, 61, 75],
smart transportation [45, 66], localization service [13, 80], recom-
mendation system [18, 63] and beyond. Significant work has been
proposed to improve the performance of FL inmultiple perspectives,
which contains but is not limited to model optimization [43, 52, 74],
privacy preserving[5, 57], and model personalization [49, 73]. In
this paper, we present BoFL to improve FL from an energy efficient
perspective.

Dynamic voltage frequency scaling. Dynamic voltage frequency scal-
ing (DVFS) is a widely applied technique for managing power and
performance of processors, such as CPU and GPU. A large amount
of research has been shown to achieve better energy efficiency with
the benefit of DVFS [23, 30, 55, 56, 70]. In this paper, we design a

7E.g., sending and receiving ResNet50 model may take 51.2𝑀𝑏/5𝑀𝑏𝑝𝑠 = 10.2𝑠 for
model transmission under 4G LTE network.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

model training pace controller based on multi-axes DVFS to min-
imize the energy consumption of edge devices during federated
learning tasks.

Bayesian optimization and its applications. Bayesian optimization
(BO) is a sample-efficient optimization framework for many black-
box functions that are expensive to evaluate. BO has been applied
across multiple fields, i.e., A/B Testing [10, 37], robotics motion
planing [46, 50], drug discovery [62], cherry picking cloud configu-
rations [4], and more recently as an important ingredient for neural
architecture search [32, 34, 72], which automates the process of
neural network design. CherryPick [4] is the first work applying
BO on system configuration selection for cloud clusters. It applies
single-object BO to minimize the overall operational cost. In this
work, we apply BO to efficiently search the vast DVFS design space
for energy-aware federated learning. Compared to CherryPick, our
problem is more challenging due to the multi-dimensional opti-
mization targets, i.e., a joint minimization of latency and energy
consumption.

8 CONCLUSION

In this work, we present BoFL, a local training pace controller for
edge devices to achieve energy efficient federated learning. Ex-
periments on multiple edge devices over multiple neural network
models show that BoFL can reduce energy consumption of model
training by more than 20% compared to the Performant base-
line, and achieve close to optimal energy efficient compared to the
Oracle target with as low as 1.2% - 3.4% energy regret.

ACKNOWLEDGMENT

This work was supported by IBM-Illinois Discovery Accelerator
Institute.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16) (Sa-
vannah, GA, USA). 265–283.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,
308–318.

[3] Abdullatif Albaseer, Bekir Sait Ciftler, Mohamed Abdallah, and Ala Al-Fuqaha.
2020. Exploiting unlabeled data in smart cities using federated edge learning.
In 2020 International Wireless Communications and Mobile Computing (IWCMC).
IEEE, 1666–1671.

[4] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). Boston, MA, 469–482.

[5] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan
Rogers. 2018. Protection against reconstruction and its applications in private
federated learning. arXiv preprint arXiv:1812.00984 (2018).

[6] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European conference on machine learning
and knowledge discovery in databases. Springer, 387–402.

[7] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[8] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent.
Advances in Neural Information Processing Systems 30 (2017).

[9] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of Machine Learning and Systems 1 (2019), 374–388.

[10] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. Advances in neural information processing systems 24 (2011).

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems.

[12] Yiqiang Chen, Xin Qin, JindongWang, Chaohui Yu, andWenGao. 2020. Fedhealth:
A federated transfer learning framework for wearable healthcare. IEEE Intelligent
Systems 35, 4 (2020), 83–93.

[13] Bekir Sait Ciftler, Abdullatif Albaseer, Noureddine Lasla, and Mohamed Abdallah.
2020. Federated learning for localization: A privacy-preserving crowdsourcing
method. arXiv preprint arXiv:2001.01911 (2020).

[14] Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. 2021.
Multi-objective bayesian optimization over high-dimensional search spaces. arXiv
preprint arXiv:2109.10964 (2021).

[15] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili,
Anas Z Abidin, Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood,
Chien-Sung Tsai, et al. 2021. Federated learning for predicting clinical outcomes
in patients with COVID-19. Nature medicine 27, 10 (2021), 1735–1743.

[16] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. IEEE, 248–255.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[18] Sijing Duan, Deyu Zhang, Yanbo Wang, Lingxiang Li, and Yaoxue Zhang. 2019.
JointRec: A deep-learning-based joint cloud video recommendation framework
for mobile IoT. IEEE Internet of Things Journal 7, 3 (2019), 1655–1666.

[19] Jie Feng, Can Rong, Funing Sun, Diansheng Guo, and Yong Li. 2020. PMF: A
privacy-preserving human mobility prediction framework via federated learn-
ing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 4, 1 (2020), 1–21.

[20] Peter I Frazier. 2018. Bayesian optimization. In Recent advances in optimization
and modeling of contemporary problems. Informs, 255–278.

[21] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. 2010. Kriging is
well-suited to parallelize optimization. In Computational Intelligence in Expensive
Optimization Problems. Springer, 131–162.

[22] Stewart Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, and Svetha
Venkatesh. 2020. Bayesian optimization for adaptive experimental design: A
review. IEEE access 8 (2020), 13937–13948.

[23] João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás. 2019. DVFS-
aware application classification to improve GPGPUs energy efficiency. Parallel
Comput. 83 (2019), 93–117.

[24] Hongpeng Guo, Shuochao Yao, Zhe Yang, Qian Zhou, and Klara Nahrstedt. 2021.
CrossRoI: cross-camera region of interest optimization for efficient real time
video analytics at scale. In Proceedings of the 12th ACM Multimedia Systems
Conference (Istanbul, Turkey). 186–199.

[25] Gurobi Optimization, LLC. 2020. Gurobi-The fastest solver. https://www.gurobi.
com/. Accessed: 2022-05-08.

[26] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang.
2018. Fairness without demographics in repeated loss minimization. In Interna-
tional Conference on Machine Learning. PMLR, 1929–1938.

[27] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings
in deep residual networks. In European conference on computer vision. Springer,
630–645.

[28] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[29] Texas Instruments. 2012. INA3221 Texas Instruments. https://www.ti.com/
product/INA3221. Accessed: 2022-05-08.

[30] Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. 2015. Improving
GPGPU energy-efficiency through concurrent kernel execution and DVFS. In
2015 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, 1–11.

[31] Amelia Jiménez-Sánchez, Mickael Tardy, Miguel A González Ballester, Diana
Mateus, and Gemma Piella. 2021. Memory-aware curriculum federated learning
for breast cancer classification. arXiv preprint arXiv:2107.02504 (2021).

[32] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural
Architecture Search System (KDD ’19). Association for Computing Machinery,
1946–1956.

[33] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

https://www.gurobi.com/
https://www.gurobi.com/
https://www.ti.com/product/INA3221
https://www.ti.com/product/INA3221

BoFL: Bayesian Optimized Local Training Pace Control for Energy Efficient Federated Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

[34] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and
Eric P Xing. 2018. Neural architecture search with bayesian optimisation and
optimal transport. Advances in neural information processing systems 31 (2018).

[35] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning. In Proceedings of the 37th International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research, Vol. 119).
PMLR, 5132–5143.

[36] Young Geun Kim and Carole-Jean Wu. 2021. Autofl: Enabling heterogeneity-
aware energy efficient federated learning. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 183–198.

[37] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne. 2009.
Controlled experiments on the web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[38] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[39] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. 2022. FedScale: Benchmarking Model
and System Performance of Federated Learning at Scale. In Proceedings of the 39th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 162). PMLR, 11814–11827.

[40] Li Li, Haoyi Xiong, Zhishan Guo, JunWang, and Cheng-Zhong Xu. 2019. SmartPC:
Hierarchical Pace Control in Real-Time Federated Learning System. In 2019 IEEE
Real-Time Systems Symposium (RTSS). 406–418.

[41] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020), 429–450.

[42] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao
Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al.
2019. Privacy-preserving federated brain tumour segmentation. In International
workshop on machine learning in medical imaging. Springer, 133–141.

[43] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019.
On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189
(2019).

[44] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019. Communica-
tion efficient decentralized training with multiple local updates. arXiv preprint
arXiv:1910.09126 5 (2019).

[45] Yi Liu, JQ James, Jiawen Kang, Dusit Niyato, and Shuyu Zhang. 2020. Privacy-
preserving traffic flow prediction: A federated learning approach. IEEE Internet
of Things Journal 7, 8 (2020), 7751–7763.

[46] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. 2007. Au-
tomatic Gait Optimization with Gaussian Process Regression. In Proceedings of
the 20th International Joint Conference on Artifical Intelligence (Hyderabad, India)
(IJCAI’07). Morgan Kaufmann Publishers Inc., 944–949.

[47] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, 142–150.

[48] Derek C Manheim and Russell L Detwiler. 2019. Accurate and reliable estimation
of kinetic parameters for environmental engineering applications: A global, multi
objective, Bayesian optimization approach. MethodsX 6 (2019), 1398–1414.

[49] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three approaches for personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619 (2020).

[50] Ruben Martinez-Cantin, Nando De Freitas, Eric Brochu, José Castellanos, and
Arnaud Doucet. 2009. A Bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot. Autonomous
Robots 27, 2 (2009), 93–103.

[51] Alexandre Mathern, Olof Skogby Steinholtz, Anders Sjöberg, Magnus Önnheim,
Kristine Ek, Rasmus Rempling, Emil Gustavsson, and Mats Jirstrand. 2021. Multi-
objective constrained Bayesian optimization for structural design. Structural and
Multidisciplinary Optimization 63, 2 (2021), 689–701.

[52] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54). PMLR, 1273–1282.

[53] H BrendanMcMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya Mironov,
Nicolas Papernot, and Peter Kairouz. 2018. A general approach to adding differ-
ential privacy to iterative training procedures. arXiv preprint arXiv:1812.06210
(2018).

[54] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell.
2016. Branch-and-bound algorithms: A survey of recent advances in searching,
branching, and pruning. Discrete Optimization 19 (2016), 79–102.

[55] Seyed Morteza Nabavinejad, Hassan Hafez-Kolahi, and Sherief Reda. 2019. Coor-
dinated DVFS and precision control for deep neural networks. IEEE Computer
Architecture Letters 18, 2 (2019), 136–140.

[56] Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2022. Co-
ordinated Batching and DVFS for DNN Inference on GPU Accelerators. IEEE
Transactions on Parallel and Distributed Systems (2022).

[57] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739–753.

[58] Nvidia. 2017. Jetson TX2 Module. https://developer.nvidia.com/embedded/jetson-
tx2. Accessed: 2022-05-08.

[59] Nvidia. 2018. Jetson AGX Xavier Developer Kit. https://developer.nvidia.com/
embedded/jetson-agx-xavier-developer-kit. Accessed: 2022-05-08.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035.

[61] Stephen R Pfohl, Andrew M Dai, and Katherine Heller. 2019. Federated and
differentially private learning for electronic health records. arXiv preprint
arXiv:1911.05861 (2019).

[62] Edward O Pyzer-Knapp. 2018. Bayesian optimization for accelerated drug dis-
covery. IBM Journal of Research and Development 62, 6 (2018), 2–1.

[63] Tao Qi, FangzhaoWu, ChuhanWu, Yongfeng Huang, and Xing Xie. 2020. Privacy-
preserving news recommendationmodel learning. arXiv preprint arXiv:2003.09592
(2020).

[64] Carl Edward Rasmussen. 2003. Gaussian Processes in Machine Learning. In
Advanced Lectures on Machine Learning. Springer, 63–71.

[65] Ryan Roussel, Adi Hanuka, and Auralee Edelen. 2021. Multiobjective Bayesian
optimization for online accelerator tuning. Physical Review Accelerators and
Beams 24, 6 (2021), 062801.

[66] Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mérouane Debbah. 2019.
Distributed federated learning for ultra-reliable low-latency vehicular communi-
cations. IEEE Transactions on Communications 68, 2 (2019), 1146–1159.

[67] Secondmind-labs. 2020. Trieste Document. https://secondmind-labs.github.io/
trieste/index.html. Accessed: 2022-05-08.

[68] Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. 2022. Sample Selection
with Deadline Control for Efficient Federated Learning on Heterogeneous Clients.
arXiv preprint arXiv:2201.01601 (2022).

[69] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian Opti-
mization of Machine Learning Algorithms. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2 (Lake Tahoe,
Nevada) (NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 2951–2959.

[70] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. 2019. The impact
of GPU DVFS on the energy and performance of deep learning: An empirical
study. In Proceedings of the Tenth ACM International Conference on Future Energy
Systems (Phoenix, AZ, USA). 315–325.

[71] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMa-
han, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly,
Deepesh Data, et al. 2021. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917 (2021).

[72] Colin White, Willie Neiswanger, and Yash Savani. 2019. Bananas: Bayesian
optimization with neural architectures for neural architecture search. arXiv
preprint arXiv:1910.11858 1, 2 (2019), 4.

[73] Qiong Wu, Kaiwen He, and Xu Chen. 2020. Personalized federated learning for
intelligent IoT applications: A cloud-edge based framework. IEEE Open Journal
of the Computer Society 1 (2020), 35–44.

[74] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

[75] Zhaoping Xiong, Ziqiang Cheng, Chi Xu, Xinyuan Lin, Xiaohong Liu, Dingyan
Wang, Xiaomin Luo, Yong Zhang, Nan Qiao, Mingyue Zheng, et al. 2020. Facing
small and biased data dilemma in drug discovery with federated learning. BioRxiv
(2020).

[76] Kaifeng Yang, Michael Emmerich, André Deutz, and Thomas Bäck. 2019. Multi-
objective Bayesian global optimization using expected hypervolume improve-
ment gradient. Swarm and evolutionary computation 44 (2019), 945–956.

[77] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903
(2018).

[78] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and Mohammad
Shikh-Bahaei. 2020. Energy efficient federated learning over wireless commu-
nication networks. IEEE Transactions on Wireless Communications 20, 3 (2020),
1935–1949.

[79] Zhe Yang, Klara Nahrstedt, Hongpeng Guo, and Qian Zhou. 2021. Deeprt: A
soft real time scheduler for computer vision applications on the edge. In 2021
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 271–284.

https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://secondmind-labs.github.io/trieste/index.html
https://secondmind-labs.github.io/trieste/index.html

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada H. Guo et al.

[80] Feng Yin, Zhidi Lin, Qinglei Kong, Yue Xu, Deshi Li, Sergios Theodoridis, and
Shuguang Robert Cui. 2020. FedLoc: Federated learning framework for data-
driven cooperative localization and location data processing. IEEE Open Journal
of Signal Processing 1 (2020), 187–215.

[81] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P.
Gummadi. 2017. Fairness Constraints: Mechanisms for Fair Classification. In
Proceedings of the 20th International Conference on Artificial Intelligence and

Statistics (Proceedings of Machine Learning Research, Vol. 54). PMLR, 962–970.
[82] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. 2013.

Active Learning for Multi-Objective Optimization. In Proceedings of the 30th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 28), Sanjoy Dasgupta and David McAllester (Eds.). PMLR, Atlanta,
Georgia, USA, 462–470.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Energy Efficient Federated Learning
	2.2 Complicated correspondence between DVFS Configurations and Training Performance
	2.3 Multi-objective Bayesian Optimization for Blackbox Optimization Problems

	3 Problem Definition and Preliminaries
	3.1 Problem formulation
	3.2 Solution Sketch with MBO Searched Pareto Set

	4 BoFL System Design
	4.1 Overview
	4.2 Safe Random Exploration
	4.3 Pareto Front Construction
	4.4 Exploitation

	5 Implementation
	5.1 Hardware Testbed
	5.2 Software Implementation

	6 Evaluation
	6.1 Methodology
	6.2 BoFL Energy Efficiency
	6.3 BoFL Pareto Construction
	6.4 Sensitivity to Deadline Length
	6.5 MBO Module Overhead

	7 Related Work
	8 Conclusion
	References

