
CrossRoI: Cross-camera Region of Interest Optimization for
Efficient Real Time Video Analytics at Scale

Hongpeng Guo
hg5@illinois.edu

UIUC

Shuochao Yao
shuochao@gmu.edu

George Mason
University

Zhe Yang
zheyang3@illinois.

edu
UIUC

Qian Zhou
qianz@illinois.edu

UIUC

Klara Nahrstedt
klara@illinois.edu

UIUC

ABSTRACT

Video cameras are pervasively deployed in city scale for public good

or community safety (i.e. traffic monitoring or suspected person

tracking). However, analyzing large scale video feeds in real time is

data intensive and poses severe challenges to today’s network and

computation systems. We present CrossRoI, a resource-efficient

system that enables real time video analytics at scale via harness-

ing the videos content associations and redundancy across a fleet

of cameras. CrossRoI exploits the intrinsic physical correlations

of cross-camera viewing fields to drastically reduce the commu-

nication and computation costs. CrossRoI removes the repentant

appearances of same objects in multiple cameras without harming

comprehensive coverage of the scene. CrossRoI operates in two

phases - an offline phase to establish cross-camera correlations, and

an efficient online phase for real time video inference. Experiments

on real-world video feeds show that CrossRoI achieves 42% ∼ 65%

reduction for network overhead and 25% ∼ 34% reduction for re-

sponse delay in real time video analytics applications with more

than 99% query accuracy, when compared to baseline methods. If

integrated with SotA frame filtering systems, the performance gains

of CrossRoI reach 50% ∼ 80% (network overhead) and 33% ∼ 61%

(end-to-end delay).

CCS CONCEPTS

• Information systems → Computing platforms; • Networks

→ Application layer protocols; • Computing methodologies

→ Computer vision;

KEYWORDS

video analytics, video streaming, convolutional neural networks

1 INTRODUCTION

Driven by plummeting camera prices and advances of intelligent

video inference algorithms, video cameras are being deployed ubiq-

uitously in recent days. For example, many cities in the world now

deploy tens of thousands of cameras at key locations, such as high-

way entrances or roads intersections, to collect rich video data

for applications ranging from traffic monitoring, public safety and

suspected target tracking [1, 2, 4, 5, 42]. As tremendous data are

being generated by the cameras in every second, organizations usu-

ally rely on live video analytics to retrieve key information, such

as objects locations and identities, in real time. Two key enablers

for fast and accurate video inference are the rapid development of

deep neural networks, especially Convolutional Neural Networks

(CNNs), and their hardware accelerators which empower fast and

large-scale neural networks training and inference.

Figure 1: An application scenario of CrossRoI. Red arrows show the

viewing angles of cameras. The two frames on the right are captured

at timestamp C1 from camera 1 and 2, respectively.

However, live video analytics in large scale are usually network-

exhaustive and compute-intensive. In a typical video analytics pipeline,

real time video feeds from widely deployed cameras are streamed

to a cloud server or geographically close edge clusters where pow-

erful hardware (e.g. GPUs) and fine-trained CNNs (e.g. YOLO [34])

are prepared. The server immediately loads videos into the in-

ference pipelines and aims for accurate and low latency analytic

results. The high network demands for video streaming and com-

putation demands for CNN-based inference pose severe challenges

to such video analytics framework, especially when organizations

are steadily increasing their deployment scale, which amplifies the

problems.

Significant work has been presented to improve the efficiency

of video analytics pipelines, which can be categorized into two

groups: (1) frame filtering on single camera [13, 14, 23, 27], and

(2) target oriented cross-camera analytics [24, 25, 30]. Works in

group one (e.g. Reducto [27]) optimize the cost/accuracy tradeoffs

of single-video analytics with frame sampling or CNN-based filters

for discarding frames. Reductos’ optimizations are within single

video streams independent of other streams, resulting in linear

growth of resource demands and limitations to scaling. Works in

group two (e.g. Spatula [25]) schedule the on and off of geographi-

cally distributed cameras to track a predefined target object across

cameras. While Spatula substantially reduces network/computation

demands by turning off the majority of cameras at any time, it fails

to provide a comprehensive coverage to every scene where cameras

are deployed.

In this work, we presentCrossRoI system to address the resource-

intensive challenges for real time video analytics on a fleet of closely

located cameras (e.g. the cameras installed at a traffic intersec-

tion) via harnessing the video content associations and redundancy

across the group of cameras. As shown in figure 1, 5 cameras are

deployed at a road intersection with their viewing field overlapped.

An object in the scene may appear in the field-of-view of multi-

ple cameras at the same time. In many video analytics tasks (e.g.

vehicle or suspect person detection), any capture of the interest-

ing target is effective to fulfill the mission. For example in figure

1 either detection of the black car in camera 1 or 2 is enough to

locate it at this traffic crossing at this moment (C1). Removing the

lower left region (shadow region) of camera 2’s frame at C1 does not

influence the comprehensiveness of vehicle detection results at all 1.

We argue that both network traffic and computation demands can

be substantially reduced without harming inference accuracy for

video analytics pipelines if the intrinsic associations across cameras

could be discovered and harnessed properly.

CrossRoI highlights three challenges to discover the intrin-

sic data associations and harness the content redundancy across

multiple cameras as follows.

(C1) How to establish data association among a fleet of cameras

on unlabeled video data automatically and accurately?

(C2) How to calculate cross-camera region-of-interest (RoI) collec-

tively to remove redundancy without harming the comprehen-

siveness of detection coverage?

(C3) How to leverage cameras’ regions-of-interest to drastically

reduce network overhead and boost sever inference throughput

in the video analytics pipeline?

To tackle these challenges, we design CrossRoI to operate in two

distinct phases-an online phase and an offline phase. In the offline

phase, CrossRoI establishes the data association and calculates

the optimized RoI information. In the online phase, cameras filter

their real time video streams according to the RoI information to

reduce overall system data intensity. To establish cross-camera data

association, we augment existing re-identification solutions with

statistical filters to generate highly-accurate ReID results, and hence,

use the cross-camera appearances of same objects to represent data

correlations among cameras (C1). We slice camera frames into fine-

grained tiles and develop a combinatorial optimization framework

to calculate least-sized regions of interest among the camera fleet

collectively without missing detection of any object (C2). To best

alleviate resource-intensive challenges, we apply the optimized RoI

information in each camera as a filter to prevent non-interesting

data being dumped into the analytics pipeline. We further specially

design video compression module and RoI based CNN inference

pipeline to boost overall system performance(C3). Overall, this

paper makes the following contributions:

(1) We augment existing re-identification (ReID) algorithms to es-

tablish cross-camera data association automatically and accu-

rately.

(2) We develop an optimization framework to harness cross-camera

data redundancy and significantly reduce the data intensity of

the video analytics pipeline.

1Different applications may have different requirements to define a detection as effec-
tive. For example in a vehicle plate detection scenario, only the detection of the front
or the back view is effective. In this paper, we assume an application that a detection
from any viewpoint is sufficient to fulfill the mission. However, our system can be
easily scaled to other scenarios given clear effectiveness definition, i.e., we only take
the front/back views into our system in the vehicle plates detection scenario.

(3) Our specially designed video compression module and RoI-

based CNN inference pipeline boost the overall system perfor-

mance even further.

(4) Evaluations on real-world traffic videos suggest our system

achieves network overhead reduction up to 65% and end-to-end

response latency reduction by 34% compared to baselines.

(5) Compared to most frame-filtering based existing solutions (e.g.,

Reducto [27]), CrossRoI exemplifies an extra layer of optimiza-

tion from spatial domain. When integrated with frame-filtering

module, CrossRoI outperforms original frame-filtering systems

by 2×, and outperforms baselines up to 5×, in terms of network

usage.

The rest of the paper is organized as follows. In §2, we survey

related literature and present backgrounds about video analytics,

streaming and ReID frameworks. In §3, we present our ReID based

cross-camera data associations and optimization framework to gen-

erate RoI masks for each camera. We present CrossRoI system

workflow and design details in §4. §5 shows our evaluations of

CrossRoI system. Finally, §6 concludes the paper.

2 BACKGROUNDS AND RELATED WORKS

2.1 Video Analytics Systems

Video analytics systems have been widely studied in recent liter-

ature. [11, 13–16, 23–25, 27, 28, 30, 33, 41, 45–47]. While all these

works focus on solving the resource-intensive challenge, different

approaches have been proposed. We categorize all existing works

in terms of (1) their system architectures, (2) capabilities to fulfill

real-time processing, and (3) processing multiple-camera videos

independently or collectively, as follows.

Most works fells in either a three-layered camera-edge-cloud

[11, 14, 23, 25, 28, 41, 45, 47] or a two-layered camera-cloud [13,

15, 20, 27, 33] architecture. The first class of work, exemplified

by Focus [23], deploys close-to-camera edge devices to augment

the processing power of cameras, and hence, prune redundant data

using neural networks accurately before sending videos to the cloud

for deep analysis. While the two-layered works, i.e. Glimpse [13],

use heuristics and lower level features to remove video redundancy,

which fits better into current real-word deployment where cameras

are usually cheap and the edge servers are not available.

Real time video analytics systems [13, 15, 16, 25, 27] optimize the

whole pipeline, including camera processing delay, network over-

head and server inference latency, to reduce end-to-end respond

time for the inference tasks. For example, Reducto [27] assigns tiny

workload to the cameras to avoid exaggerating camera processing

delay, and hence, fulfill real time missions. Non-real-time systems

[23, 30] try to answer “after the fact” types queries from large

scale stored videos. The latter class of systems usually focus on the

efficiency of key frame searching and high inference throughput.

The majority of video analytics systems are designed to process

video streams independently [13, 14, 23, 27]. All optimization and

redundancy pruning are within a single video stream, which leads

to its linear growth resource requirements. The other systems [24,

25, 30] focus on the cross-camera analytics on a group of cameras.

But they either fail to achieve real time inference, i.e. Caesar [30], or

fails to provide comprehensive coverage to the surveillance scene,

i.e. Spatula [25].

2

Different from all existing works, CrossRoI achieves real-time

cross-camera video analytics over a fleet of cameras and fulfills

comprehensive scene coverage. CrossRoI fits into a two-layered

architecture which only assumes normal surveillance cameras with-

out the needs of advanced edge devices.

2.2 Classic & Tile-based Video Compression

The vanilla video compression standard, i.e. H.264 AVC [43] and

HEVC [40], are widely applied to significantly reduce data sizes

in video storage/streaming applications. These compressors usu-

ally encode videos with two steps. (1) The encoders first split ev-

ery frame into many small pixel blocks (for example, 16 ?8G4;B ×

16 ?8G4;B block size for H.264 standard). For every block in a video

frame, the compressor searches similar blocks either within the

already-encoded portion of current frame or in nearby frames that

are buffered by the encoder. When a closely matched block is identi-

fied, it encodes the position of this similar block in a motion vector.

(2) The encoder calculates the pixels level difference between cur-

rent block and the reference block, and encodes this sparse residual

difference with quantization and entropy encoding. Video compres-

sion efficacy can be impacted by the frame size in such codecs. For

example, a block has more reference block options when the frame

size is large, and hence, more easily get encoded into space-efficient

motion vector and sparse residual difference.

Tile-based video compression are widely used in data-intensive

applications, for example, panoramic video streaming. [12, 17, 19,

44] Tile-based video encoder splits the whole frame spatially into

several rectangular tiles. Every tile of the video is processed inde-

pendently by a classic video compressor (i.e. H.264) and can be

encoded into different qualities. For example, a compressor can

encode the region-of-interest parts of a video with high bitrates

and the other parts with low bitrates. While tile-based compression

reduces video size through the semantic region-of-interest infor-

mation, splitting a large video into several smaller ones degrades

the overall efficacy of the compressors.

In CrossRoI, we applied tile-based video compression to include

only the interesting regions of the surveillance videos. To alleviate

the compression efficacy degradation, we design a tile grouping

algorithms to merge small tiles into larger ones, which reduces

network overhead even further compared to existing tile-based

approaches (§4.3).

2.3 Computer Vision based Object
Re-identification

CrossRoI establishes the cross-camera region associations through

profiling object re-identification (ReID) results among the group

of cameras. ReID is a challenging problem in computer vision

[31, 38, 48]. A typical ReID pipeline starts with automatic object de-

tection with object detectors, i.e. YOLO [34], FasterRCNN [37] and

SSD [29]. ReID algorithms then extracts deep image features from

the detected objects and computes the similarity of two detection

based on their feature distance [21, 26, 29, 39]. Some works [21, 26]

apply object movement patterns as spatial-temporal cues to further

improve the identification accuracy. Although many ReID algo-

rithms are proposed, the ReID results are still not perfect, especially

in crowded scenes and large camera networks where ablations and

significantly different lighting conditions and viewing angles are

common. Different from computer vision communities, we do not

reinvent new ReID algorithms in this paper, but apply statistical fil-

ters to augment existing ReID algorithms to obtain highly-confident

region associations from error prone ReID results (§4.2).

3 CROSSROI BASIC MODELS, CONCEPTS
AND PROBLEM DEFINITION

The CrossRoI system has two entities, which are CrossRoI cameras

and CrossRoI server. CrossRoI cameras are the video providers.

They capture videos of the mission scene and transmit them back

to CrossRoI server for inference and analytics, e.g., car detection

and counting. The workflow of CrossRoI contains an offline phase

and an online phase. In offline phase, the CrossRoI server collects

synchronized video clips from each CrossRoI camera. Through

profiling and analyzing these clips, the server can calculate optimal

RoI masks for the cameras. These RoI masks will then be applied in

the online phase to reduce network overhead and boost inference

throughput at the CrossRoI server. In the rest of this section, we

focus on the offline video profiling process of CrossRoI to explore

the following two questions:

• How to establish the data associations between multiple cameras

covering the same scene?

• How to calculate the optimal RoImasks for these cameras without

losing any interesting object?

Specifically, we first introduce the video data model in §3.1, and

then answer the above two questions in §3.2 and §3.3, respectively.

We will present more detailed system workflow and online phase

designs in §4.

3.1 CrossRoI Data Model

We consider a CrossRoI system containing # CrossRoI cameras,

named �1,�2, . . . ,�# . In the offline phase, the CrossRoI server

collects synchronized video clips from all the CrossRoI cameras

for profiling. “Synchronized" here refers that all # video clips have

the same frame rate 5 , start at the same time2 C1, as well as the

same video length. The :-th frame of every video clip is then cor-

responding to the same timestamp C: = C1 +
:−1
5

, for any : within

the length of the videos. In this manner, the frames from Cross-

RoI cameras with the same indices are just image captures of the

same scene at the same time from different perspectives. We further

define the profile time window being a list of discrete timestamp

T = {C1, C2, . . . , C!}, where C8 is the timestamp of the 8-th frames in

the video clips and ! is the index of the last frame.

In order to study the fine-grained data associations between

cameras, we further cut every video into tiles. Tiles are smaller

rectangular spatial regions which cumulatively cover the whole

frame. As shown in Figure 2a, the whole frame area of�1 is divided

into 24 tiles indexed from 1 to 24 in an top-to-bottom, left-to-right

order. We formally define G8 as the set of tiles for camera�8 , where

1 ≤ 8 ≤ # .3 The 9-th tile of �8 can then be referred as G8, 9 . For

example, the left top tile of �1 in Figure 2a is G1,1. It is worth

2We consider two cross-camera timestamps as the same if their difference is small

enough for frame alignment, i.e. < 1

25 , which can be achieved by NTP protocol.
3In this paper, we use “tiles of �8 " and “tiles of the video generated by �8 "
interchangeably.

3

(a)�1 (b)�2

Figure 2: Video captures from�1 and�2 at timestamp C1. Each frame is divided into 24 tiles. Red shadow represents the optimized RoI masks

generated for these two cameras based on profiling on C1 only.

Timestamps C1 · · ·

Detected

Objects
OC1 = {$1,$2,$3,$4,$5,$6,$7 } · · ·

Appearance

Regions

R1
C1

= {{G1,9, G1,10, G1,15, G1,16 },

{G2,7, G2,8, G2,13, G2,14 }}

R2
C1

= {{G1,3, G1,4, G1,9, G1,10 }}

R3
C1

= {{G1,4, G1,5, G1,10, G1,11 }}

R4
C1

= {{G1,11 }}, R
5
C1

= {{G2,2, G2,8 }}

R6
C1

= {{G2,3 }}, R
7
C1

= {{G2,3, G2,9 }}

· · ·

Table 1: Cross-camera region association lookup-table for the two-

camera example as shown in figure 2.

mentioning that a tile is not corresponding to any specific frame or

timestamp. Tiling is a spatial description of how we divide the field

of views of cameras into finer granularity.

In CrossRoI, we define RoI mask as the region in camera frames

that may contain interesting objects, for example, vehicles or trucks.

The regions outside of a RoI mask are ignored in the video analytics

pipeline because no interesting targets may appear in these areas. In

our system, a tile is the smallest spatial unit to constitute a RoI mask.

The RoI mask for camera �8 , denoted as M8 , is a subset of all its

tiles, i.e., M8 ⊂ G8 . For example in figure 2a, if we want RoI region

to only include the four detected cars, then the minimum-sized RoI

mask will be as follows.

M1 = {G1,3,G1,4,G1,5,G1,9,G1,10,G1,11,G1,15,G1,16}

Assigning smallest RoI masks to each camera without losing detec-

tion of interesting objects is a non-trivial task, especially when we

want the masks fit long profiling duration. We will present our RoI

masks generation scheme in §3.3.

3.2 Cross-Camera Regions-Association
Concept

We establish cross-camera region associations based on existing

object re-identification (ReID) algorithms, which take visual or

geographical features to associate common objects across multiple

frames/ cameras. ReID algorithms assign an ID for every detected

object. Detection of the same object across different cameras will

be assigned to the same ID. For example, Figure 2a and Figure 2b

are two synchronized frames from �1 and �2, respectively. Every

detected car in both frames is assigned an ID by the ReID algorithm.

Cars$2,$3, and$4 are unique to�1. Cars$5,$6, and$7 are unique

to�2. While car$1 appears at the overlapping region of both views

and can be identified in �1 and �2 simultaneously.4

We establish the cross cameras association by profiling the ReID

results over the whole time window T . At any timestamp C< , we

record the following two elements:

• All objects being detected at this timestamp, denoted as OC< ,

• The appearance regions for each object being detected at this

timestamp.

We define the appearance region of an object $: on camera �8 at

timestamp C< as the least set of tiles that can cover $: , denoted as

':8,C<
. As the object may appear onmultiple cameras simultaneously,

we further define the appearance regions of $: at timestamp C< ,

denoted as R:
C<

, as the collection of its appearance regions over all

CrossRoI cameras, s.t.,

R:
C<

= {':8,C< |1 ≤ 8 ≤ # and ':8,C< ≠ ∅}

Take figure 2 as an example, There are seven objects being detected

at C1 in total, s.t., OC1 = {$1,$2,$3,$4,$5,$6,$7}. $1 appears in

both frames, therefore its appearance regions contains two ele-

ments, s.t.,

R1
C1
= {{G1,9,G1,10,G1,15,G1,16}, {G2,7,G2,8,G2,13,G2,14}}

The other objects appear only once and thus have single-length

appearance regions, e.g. R5
C1

= {{G2,2,G2,8}}. Profiling through

the whole time window, we can build a lookup-table which en-

sembles the ReID based region associations, as shown in table 1.

We will show how to generate optimal RoI masks with the region

associations in §3.3 shortly.

As mentioned in §2, ReID algorithms are still not perfect. In

order to achieve accurate region associations based on the error

prone ReID results, we apply statistical filters on the raw ReID

results to obtain highly-confident ReID results and establish the

region association with the selected data instead. We will show

more details about the filter design in §4.2.

3.3 RoI Masks Optimization

The optimization objective is to include least number of tiles into the

RoI masks cumulatively across all the # cameras. In order to avoid

missing any object at any timestamp in the time window, we set

the optimization constraints as any object occurred at timestamp

C< has at least one appearance region included by the RoI masks, for

4We only show detection of large objects in the two frames in figure 2 for clarity of
illustration.

4

Figure 3: System Overview of CrossRoI

any C< ∈ T . We define variableM as the union set of all the # RoI

masks, s.t. M = ∪#
8=1M8 ⊂ ∪#

8=1G8 . The optimization problem can

be formally presented as follow:

min |M| (1)

s.t.
∑

'∈R:
C<

(

1(' ∈ M)
)

≥ 1, ∀ C< ∈ T , ∀ :, s.t., $: ∈ OC<

(2)

Note that 1(·) in equation 2 is an indicator function with its range

being {0, 1}. It will return 1 if the input condition, e.g., ' ∈ M

in equation 2, is true and return 0 otherwise. Solving the above

combinatorial optimization will generate the optimal RoI masks

which include least number of tiles while ensuring every object

being detected. In the example of figure 2, if we set the time window

to include C1 only, the optimized RoI masksM will be

{G1,3,G1,4,G1,5,G1,9,G1,10,G1,11,G1,15,G1,16,G2,2,G2,3,G2,8,G2,9}

, which are shown in the figures with pink shadow. All the appear-

ance of $2, . . . ,$7 are covered by the RoI masks. As $1 appears

simultaneously on both cameras, the algorithms will only include

one of its appearance regions that introduce least overheads, e.g., its

appearance region in �1 in this example. The optimized RoI masks

will then be applied in the online phase to boost overall system

performance (§4).

4 DESIGN AND IMPLEMENTATION

4.1 System Overview

As mentioned in §3, the CrossRoI system has an offline phase and

an online phase. In offline phase, the server generates optimal RoI

masks through profiling synchronized video clips. In online phase,

the server runs video analytics tasks in real time, where the RoI

masks serve as a guidance to reduce network burden and boost

server throughput. Figure 3 depicts the high-level framework of

CrossRoI. We show more details of the workflow as follows.

4.1.1 Offline Phase. Offline server re-identification 1 . TheCross-

RoI server first applies re-identification algorithms over several

minutes of synchronized raw videos collected from the CrossRoI

cameras to characterize the view relations among different cameras.

We choose DiDi-MTMC [26] algorithm as theCrossRoI server ReID

module, which integrates vision features together with geographic

information to achieve best accuracy on our experiment dataset

(dataset details are presented in §5). At the end of the ReID step,

every interesting object (vehicles in our scenario) of every frame

is associated with a bounding box and an ID, in the form of <left,

top, width, height, id>. Left and top information locate the top left

corner of the bounding box, while width and height information

characterize the bounding box size. All four values are measured in

terms of pixel(s). These ReID results will be further processed in

modules 2 , 3 and finally be used to generate the optimized RoI

masks.

Raw ReID Results Filtering 2 . Although the ReID module achieves

state-of-the-art accuracy, its results still contain a lot of errors

and mismatches. In order to establish accurate region associations

among theCrossRoI cameras, we pass the ReID results through two

tandem statistical filters to remove the “suspicious” ID assignments

and only keep highly-confident ReID results. At the end of this

step, we get a selected set of highly-confident ReID results, which

will be used in module 3 for cross camera region associations. It

is worth mentioning that the two filters do not improve overall

ReID accuracy compared to existing ReID algorithms. The design

goal of statistical filters is to select a subset of highly-confident

object identification results, which are effective to represent the

cross-camera associations.

Regions association & RoI masks generation 3 , 4 . Based on the

filtered ReID results obtained in step 2 , the server builds a lookup

table, e.g. Table 1, that ensembles the region associations across all

the cameras. The CrossRoI server then takes the table as input into

the optimization framework and generates optimized RoI mask for

every camera, as described in §3. We use commercial optimization

solver (i.e. Gurobi [7]) to obtain the optimization results in the

offline phase. At the end of the offline phase, CrossRoI server sends

the corresponding RoI mask to each CrossRoI camera. Hence, the

cameras can use RoI masks to crop and further compress their video

streams in online phase, as shown in 5 . The CrossRoI server will

also keep the RoI masks in memory and applies them onto the CNN

inference tasks to boost its execution speed, as shown in 6 .

4.1.2 Online Phase. Oline phase video compression and streaming

5 . In the online phase, CrossRoI cameras stream their video feeds

to the server in real time. The server runs CNN based inference algo-

rithm on these videos to answer the queries (e.g. vehicles detection

or counting). In order to reduce server side bandwidth consumption

caused from receiving many video streams at the same time, all

CrossRoI cameras (1) crop their videos and only stream the areas

included by RoI masks, and (2) apply modern video compressor (e.g.,

H.264) to greatly reduce the video size. To boost video compression

efficacy on cropped videos, we develop a tile grouping algorithm

based on H.264 codec which merges the fine-grained small tiles

5

Figure 4: Statistical filters for raw ReID results. Outliers are circled

out in red color.

into larger ones, and hence, further reduces the videos size. We

present more details about this algorithm in §4.3.

RoI based real-time CNN inference 6 . Once the tile streams are

received by the CrossRoI server, they will be merged together to

reconstruct frames. Note that the non-RoI regions of a frame will

be empty (purely black) as the corresponding tiles are not streamed

to the server. These recovered frames are then pushed into a RoI

based CNN inference pipeline. In our system, we choose YOLO [34]

as the inference handler for object detection task. Different from

traditional object detection tasks, where an interesting target may

appear everywhere in the whole frame, a RoI based object detection

task has prior knowledge of the RoI regions, and thus, can greatly

reduce the detection space (i.e. only run YOLO on the RoI regions).

In CrossRoI system, we build a RoI-YOLO detector based on SBNet

[36] which takes the RoI masks as cues to boost YOLO detection

speed by 1.2x. More details are presented in §4.4.

4.2 Raw RoI Results Analysis and Filtering
(Offline)

4.2.1 Raw ReID Results Analysis. . We first present a compre-

hensive analysis towards the raw ReID results, which sheds light

to our design of the two tandem statistical filters to remove “sus-

picious” ReID data points. We investigate pairwise ReID results

between two different cameras to understand the structure of these

raw results and where mistakes happen. In the study of a pair of

cameras, we categorize any ID assignment of a source camera, into

one of the two types, positive and negative, in terms of whether the

detected object has an appearance in the destination camera at the

same timestamp.

To better illustrate the concepts, we use �1 and �2 in figure 2 as

an example pair of cameras in the rest of this subsection. We set�1

as the source camera and�2 as the destination camera. Every object

being detected in this frame will be assigned a positive or negative

label, i.e.$1 is positive and$2,$3,$4 are negative. In our example,

every object is identified correctly. However, the ReID algorithm

may make mistakes, e.g. assigning same ID to two different objects

or assigning different IDs to multiple appearances of the same

one. To illustrate the correctness of the identification, we further

associate a correctness label, being either true or false, to each

detected object in the source camera. Hence, there are four types

of labels associated with all the identification results as follows:

• True Positive (TP). A true positive label is assigned to an object

in the source camera which has a corresponding appearance in

the destination cameras, and these two appearances are given

the same ID, e.g., $1 in �1 is a true positive data point.

• False Positive (FP). A false positive label covers either of the

following two cases: (1) a negative object being matched to an

object in the destination camera, i.e. in case $2 in �1 and $5 in

�2 being assigned the same ID, and (2) a positive object being

matched to a wrong object in the destination camera, e.g., in case

$1 in �1 being matched $7 in �2.

• True Negative (TN). A true negative label refers to an object

which has no appearance in the destination camera and that its

identification is correct, e.g., $2,$3,$4 in �1.

• False Negative (FN). A false negative label is corresponding to

the case when a positive object being mistakenly identified as a

negative object. For example, in case the ReID algorithms fails to

find the appearance of $1 in �2 and assign different IDs to these

two appearance of the same object.

Both false data (FP and FN) will sabotage the optimized RoI gen-

eration framework as mentioned in §3. Specifically, (1) the false

positive data will make the generated RoI masks incorrect, as it

introduces wrong region associations between cameras, and (2)

the false negative will significantly degrade the efficacy of non-RoI

tiles reduction, as we try to ensure every object has a least one ap-

pearance at any time. For example, if $1 in �1 and �2 are assigned

different IDs at C1, we must include both {G1,9,G1,10,G1,15,G1,16}

and {G2,7,G2,8,G2,13,G2,14} into the RoI masks forever no matter

what identification happens in later timestamps.

To better understand the distribution of the above four types of

ReID results. We profile a dataset containing synchronized videos

from five traffic cameras watching the same crossing (we will de-

scribe more details about the dataset in §5). We compare DiDi-

MTMC ReID algorithm to the ReID ground truth of the dataset and

get the distributions of the pairwise ReID results as shown in table

2. It can be observed that there are large amount of falsely identified

cases, especially the false negative identifications which usually

outweigh the total number of true/false positive samples. Applying

raw ReID results to the optimization pipeline will definitely lose

many optimization opportunities and degrade the system efficacy.

Although the raw ReID results are error prone, we make two im-

portant observations after close scrutiny of the application scenario

and results distribution (Table 2), which can help remove the false

ReID results significantly. The two observations are as follows:

(O1) The region-associations between two cameras have intrinsic

physical relation. For example, the two appearances of $1

at C1 suggest that region {G1,9,G1,10,G1,15,G1,16} in �1 and

region {G2,7,G2,8,G2,13,G2,14} in �2 are actually the same

area in physical means. In any future frames, this mapping

relation will also work.

(O2) In both positive and negative identifications of the ReID

results, the number of true samples is always greater than

that of false samples, and usually greater in several times or

magnitudes.

Based on the above two observations, we decide to apply statistical

filters to remove the false ReID results. Specifically, we design a

regression filter to remove the false positive samples and a SVM

filter to remove the false negative samples. More details will be

presented in §4.2.2 and §4.2.3.

6

S

D �1 �2 �3 �4 �5

TP FP FN TN TP FP FN TN TP FP FN TN TP FP FN TN TP FP FN TN

�1 335 253 263 7542 358 22 560 7453 162 15 336 7880 101 0 642 7650

�2 333 253 291 4317 161 81 397 4551 242 56 401 4497 50 2 773 4371

�3 358 22 977 8246 161 81 868 8558 434 40 951 8243 155 24 1871 7618

�4 162 15 512 6784 242 56 917 6258 434 40 809 6190 138 22 1402 8583

�5 101 0 694 8568 50 2 1074 8237 155 24 1552 7632 138 22 1328 7875

Table 2: Characterization of raw ReID results. S/D represents the source/destination camera. For each pair of cameras, we count the number

of identifications with four different labels, which are TP, FP, FN, TN, representing true positive, false positive, false negative and true negative,

respectively. Detail descriptions for each label type are presented in §4.2.1.

4.2.2 Regression FilterDesign and Implementation. As shown

in Figure 4, we push raw ReID data through two tandem filters to

get cleaned. The first filter is a regression filter. We dump all the pos-

itive results into a regression module to learn the intrinsic region

mappings between a pair of cameras. We use regression method

here for its reliable and successful applications to model correla-

tions between a pair of dependent variables, e.g., appearances of

same objects in source/destination cameras. The outliers of the

trained model are regarded as false positive samples and will be

rectified.

Specifically, we feed the two bounding boxes of a positive object

in its source camera and its destination camera to the regression

function, i.e. <11>G1
�1
, 11>G1

�2
> for our example at C1, where 11>G

1
�1

represents the bounding box of $1 from �1 and 11>G
1
�2

represents

that from �2. All the bounding boxes are 4D vectors in the form

of <left, top, width, height>. We apply regression filter mechanism

based on our observation that similarly localized bounding boxes

with similar sizes are objects at the same physical locations and

their corresponding appearances on the destination camera should

also be homogeneous. An outlier of the regression results is very

likely to be a false positive sample. After the regression filter, we

get a subset of positive data outliers and regard them as the false

positive samples. Instead of directly removing these data, we choose

to decouple the incorrect association between its counterpart in

destination by assign it a new ID. This data point will then be

regarded as a negative data sample to go through the SVM filter.

In our system implementation, we use the robust regression

module of sklearn [9] as our regressor. As the mapping relation

between two cameras may not be simply linear, we apply higher

order features of the data to make the filter fit ReID results better.

Specifically, we use RANSAC [18] algorithm as the kernel algorithms

of regression as its regression process naturally splits data samples

into inliers and outliers, and hence, fits the purpose of our regres-

sion filter design. We fine-tune its residual-threshold parameter,

which determines threshold distance for a sample to be regarded

as an outlier, to find the best performance. We will show more

evaluations about our filter mechanism in §5.

4.2.3 SVM Filter Design and Implementation. After the re-

gression filter, we push all the raw ReID data, both positive and

negative samples, into the SVM [22] filter. In this step , we want to

learn an accurate two-class clustering between positive and nega-

tive ReID data samples based on their position-and-shape features

(i.e., bounding box position and size). We choose SVM as the sec-

ond step filtering model for its widely successful application in

two/multiple class classification.

In our case, we feed positive data to SVM in the form of <11>G ,

1> and negative data in form of <11>G , 0>. We push all data samples

into SVM to train a model and apply this model back to the ReID

data to obtain outliers. It is worth mentioning SVMs are usually

trained and tested with different data. However, we train and use

the SVM model on the same data because we are not generating

a classifier for future data but applying it as a filter on existing

samples. We fine tune hyper parameters in SVM to avoid model

overfitting, and hence, generate no outliers. The outliers here refer

to negative samples appeared in positive regions and positive sam-

ples in negative regions, as shown in Figure 4. As we have much

less positive data and have already removed positive outliers in the

regression filter, we do not further remove positive outliers in SVM

filter. We regard the negative outliers as false negative samples and

directly remove these data from entering the optimization process.

We choose to remove false negative samples only because (1) it is

impossible to correctly make this sample “positive” by locating its

counter part in destination camera, which is not achieved even by

the state-of-the-art ReID algorithms, and (2) due to the redundancy

of region associations, i.e. different objects at different timestamp

usually convey the same regions mapping, the region associations

usually do not change without several pairs of data samples. At

the end of SVM filtering, we remove the false negative data sam-

ples. The remaining ReID results are highly confident and will go

through the profiling and optimization framework in 3 and 4 .

In our system implementation, we use the SVM module with

of sklearn [9] as our filter. We fine-tune its W parameter, which

determines the SVM kernel non-linearity, to explore the best per-

formance. More evaluations about SVM filtering are presented in

§5.

4.2.4 Discussion. As both regression filter and SVM filter are sta-

tistical, it is impossible to ensure the filtering is perfectly accurate.

It is possible that we can not remove all the false identification. The

filtering mechanism may even remove true identification results,

either true positive or true negative. However, due to the redun-

dancy of region associations, especially when we profile through

videos long enough (containing thousands of frames), the CrossRoI

system accuracy will not be degraded by the harsh filtering, while

the system efficacy gets boosted significantly. We will show more

CrossRoI system evaluations in §5.

7

>A868=0; 2 × 2 2 × 4 4 × 4 4 × 8 8 × 8

�1
82.7

(1)

85.9

(1.03)

86.2

(1.04)

89.0

(1.07)

90.4

(1.09)

97.3

(1.17)

�2
121.2

(1)

124.5

(1.03)

124.8

(1.03)

127.6

(1.05)

129.6

(1.07)

136.2

(1.12)

�3
102.2

(1)

103.3

(1.01)

103.6

(1.01)

105.2

(1.03)

106.4

(1.04)

112.9

(1.10)

�4
97.9

(1)

99.3

(1.01)

99.5

(1.01)

100.0

(1.02)

101.7

(1.04)

108.6

(1.11)

�5
40.9

(1)

41.1

(1.01)

41.4

(1.01)

42.0

(1.03)

43.2

(1.06)

47.4

(1.16)

Table 3: Efficacy characterization of tile-based video compression.

Videos are either compressed with original H.264 standard or split

into< × = tiles (e.g., 2 × 4) and compressed with tile-based method

accordingly. Video-sizes are measured in unit of MB. Bold numbers

represent the video size amplifications compared to original video

compression without tiling.

4.3 Tile Based Video Compression and
Streaming (Online)

4.3.1 Characterizing Tile-based Video Compression. In on-

line phase, the CrossRoI cameras apply RoI masks on their video

captures to crop the videos and remove all the non-RoI tiles. The

tiles included in RoI masks will be further compressed by video

compressors to reduce its file size before being streamed over the

network, as shown in 5 . However, applying video compressor on

each tile of video separately greatly degrade the efficacy of modern

video compressors, e.g. H.264. As mentioned in §2, compressors

reduce video size by exploring the content similarity among exist-

ing blocks, cutting videos into small tiles reduces the number of

references each block may refer to and thus degrades compression

efficacy. To better illustrate the performance degradation, we profile

on our dataset (§5) by cutting five different videos into different-

sized tiles and encoding them in H.264 format to characterize the

compression efficacy of the video compressor. As shown in Ta-

ble 3, we split the videos according to five settings, each split the

videos into< × = tiles evenly (e.g. 2 × 4). As we split the video in

finer-grained, the total video sizes grow larger, which indicates a

degradation of video compression efficacy.

4.3.2 Tile Grouping Algorithm. In order to improve video com-

pression efficacy, we develop a straight-forward greedy-based tile

grouping algorithm to merge fine-grained small tiles in RoIs masks

into larger ones to further reduce the video-sizes being sent to the

CrossRoI server over network. As shown in Figure 5(a), the video

is cut into 6 × 5 small tiles. The white tiles are included in the RoI

mask, while the shadow tiles are in non-RoI region. The tile group-

ing algorithm interactively find the largest inscribed rectangular

in the RoI masks and merge all small tiles in this rectangule into a

large tile until every tile in RoI mask is processed. For example, in

figure 5(b), we first merge all the 12 tiles covering region 1 into a

large tile, and then merge the remaining 4 tiles into two large tiles,

respectively. In this way, we merge the original 16 small tiles into 3

larger ones, and hence, improve the compression efficacy.

Finding largest inscribed rectangular in a binary grid can be

easily solved with dynamic programming in O(") time, where "

is the number of small tiles in the video. The overall time complexity

of the tile grouping is hence upper bounded byO("2). Furthermore,

the tile grouping results can be calculated in offline phase once the

RoI masks are generated. Therefore, the tile grouping algorithm

will introduce zero overhead to the CrossRoI cameras in online

phase. It is worth mentioning that our tile grouping algorithm is

a heuristic greedy algorithm which cannot ensure the generated

groups is exactly the optimal way to merger tiles. However, we

show the significant improvement of video compression efficacy

when applying our algorithm through experimental evaluations in

§5.

4.3.3 Implementation. InCrossRoI cameras, we choose ffmpeg

[6] H.264 implementation as our video compressor. The video com-

pressor will queue a segment of video frames, i.e. 2s or 20 frames,

and compress these images into a short video before sending it to

the server. A longer segment benefits video compression efficacy,

as the more temporal redundancy can be reduced, but increases

server response delay for detecting objects in video. We will show

more evaluations on video segment length in §5.

4.4 RoI Based CNN Inference (Online)

Once the CrossRoI server receives video feeds from the cameras,

it will dump these videos into the video analytics pipeline, which

loads both video data and CNN-based machine inference models

(e.g. YOLO object detector) to GPU and finally return the detection

results (e.g. bounding boxes of vehicles) 6 . Traditional CNNmodels

usually have a respective field of the whole frame, which is not

optimized for our case where the prior knowledge of RoI masks

is available. In CrossRoI server, we prefer a RoI-based inference

pipeline, where the CNN model works on the RoI covered data only,

and hence, boosts the system inference speed.

In the CrossRoI server, we choose to implement the RoI-based

CNN inference pipeline based on SBNet [36], which is an optimized

CUDA kernel specially designed for RoI based CNN inference tasks.

Image data is usually transformed into 4D tensors, in the form

of <batch, height, width, channel>, when being processed in GPU.

SBNet divides the input tensor into small tiles in the height and

width dimensions. It gathers all the RoI “tensor-tiles” and stacks

them together to generate a small and deep tensor constituting of

RoI-covered data only. As presented in figure 6, SBNet kernel adds

a gather module before each convolutional layer of a CNN model

to generate the “RoI tensor”. SBNet then passes the new tensor

through the convolutional module to get the data manipulated by

the model. After the convolutional layer, SBNet adds another scatter

module to transform the narrow tensor back to the original shape.

Based on SBNet, we build a RoI-YOLO object detector with

Tensorflow [10]. It is worth mentioning that although SBNet can

boost the system inference speed significantly (i.e. 1.5 ∼ 2.5×) when

the RoI area is small (10% ∼ 20%) compared to the whole frame,

SBNet introduces computational overhead (i.e. gather and scatter)

compared to traditional CUDA kernel and may not perform as well

when the RoI area is close to the whole frame. In practice, we load

both RoI-YOLO and normal YOLO into GPU and push large RoI-area

videos to normal YOLO model instead to achieve best performance.

More evaluations about our CNN inference model will be presented

in §5.

8

Figure 5: Tile grouping algorithm.

White tiles are corresponding to

the RoI mask regions. Shadow tiles

are out of the RoI mask.

Figure 6: SBNet architecture illustrated with

the RoI mask as shown in figure 2a. This fig-

ure ismodified based on the SBNet paper [36].

Figure 7: ReID ground truth augmentation. Blue

bboxes represent original detection provided by

the dataset ground truth. The green bbox is miss-

ing in the ReID ground truth due to ablation. Red

bboxes are not included in original ground truth

because they are out of the view-overlapping re-

gion of the cameras.

5 EVALUATION

5.1 Methodology

5.1.1 Dataset. We evaluate our system with AI City Challenge

2020 traffic video dataset published by NVIDIA [32]. The dataset

consists of two types of scenes where the traffic cameras are de-

ployed either along long streets or around a traffic intersection, in

a northern American city. We choose the most challenging scene

of type two to evaluate CrossRoI, where 5 cameras are deployed

around a traffic crossing with complicated inter-camera viewpoint

overlapping.We present the locations and viewing angles of the five

cameras in Figure 1. The dataset provides 5 synchronized videos

taken from five cameras with 10 fps frame rate. The length of the

videos ranges from 193 ∼ 215 seconds. We choose their overlapped

180s to evaluate the CrossRoI system. All the five videos have

1920 ?8G4;B × 1080 ?8G4;B resolutions (1080p) except the video gen-

erated by �5, which is 1280 ?8G4;B × 960 ?8G4;B .

The five videos in scene 1 capture more than 30K vehicle bound-

ing boxes over 3 minutes. Ground truth for vehicle re-identification

(ReID) is provided with the dataset. However, the ReID ground truth

has a shortcoming that it is very sensitive to occlusion, i.e. when

vehicle � occludes vehicle � slightly, the ground truth will miss the

detection and identification of �, while � could actually be detected

by object detectors clearly. This usually leads to the “disappearance”

of a vehicle for several frames, when it is partially occluded by

other cars, in its continuous occurrence over the scene. Hence, we

apply Kalman filter to fill the disappearance gaps in vehicles consec-

utive appearance. Another shortcoming of the ReID ground truth

is that it only detects vehicles passing through multiple cameras

and misses those vehicles appearing in a single camera only. We

solve this limitation by augmenting the ReID ground truth with

YOLO object detection results and assign unique ids to the vehicles

not originally included in ReID ground truth. Figure 7 shows an

illustrative example of our ground truth augmentation method.

5.1.2 Evaluation Scenario & Metrics. In our evaluation, we

consider the query scenario as unique vehicle detection. Specifically,

we want to detect every unique vehicle across all cameras at the

scene in real time. As shown by the example in figure 2, there are 7

vehicles across the scene covered by �1 and �2 with 8 appearance

bounding boxes. Our query scenario requires at least one detection

bounding box for each unique object. Therefore, reporting either

one of the two bounding boxes of$1 fulfills the query requirement.

As the CrossRoI system has two phases, we apply first 60s of the

five videos as the input of offline phase to generate the RoI masks

and evaluate the online phase system performance with the last

120s. The performance evaluation consists of the following four

metrics:

(1) Results Accuracy. We define accuracy error as the absolute

value of the percentile difference on the number of detected

unique cars between the correct and system returned value.

Hence, the accuracy is defined as one minus the error. As the

dataset does not provide ground truth for vehicle detection, we

fuse the ReID ground truth and raw YOLO detection results as

the correct reference in our evaluation.

(2) Network Overhead. We define network overhead as the aver-

age bandwidth usage for CrossRoI server to download online

video feeds from the cameras in real time.

(3) System Throughput. We define the system throughput as

two parts: (1) the speed for the CrossRoI server to run vehicle

detection inference in the online phase, and (2) the speed for

CrossRoI cameras to compress video streams in real time.

(4) End-to-end Respond Latency. The average delay for Cross-

RoI server to generate vehicle detection results in the online

phase. This latency includes camera side processing delay, net-

worked latency and CrossRoI server processing overhead.

5.1.3 Hardware & Implementation. We deploy CrossRoI ser-

vice on a server with 2 GeForce RTX 2080 Graphics Card, each

with 2944 CUDA cores. The server has an Intel i7-9700K 8-core

CPU and 64GB memory. The CrossRoI cameras are emulated on

a laptop computer with an Intel i7-8850H 6-core CPU with 16GB

memory. The laptop achieves 23 fps throughput for H.264 video

compression on 1080p videos. Its performance is similar to most

surveillance cameras which can achieve 25 ∼ 30 fps throughput

on 1080p videos (e.g. Arecont Vision MegaVideo [3] and Logitech

C930e [8]). The recorded videos are stored onto the laptop and

streamed out to the server in real time with ffmpeg. The cameras

and server are connected with emulated WiFi networks of 30Mbps

bandwidth and 10ms round-trip-time. In this evaluation, we choose

64 ?8G4;B × 64 ?8G4;B as basic tile size to constitute the RoI masks

for all five cameras.

5.2 Ablation Studies

We compare CrossRoI with four alternative methods to verify its

merits and some of our design choices. Each alternative achieves

“partial” functionality of CrossRoI by turning off one or some of

9

CrossRoI No-Filters
0.96

0.98

1.00

A
c
c
u
ra
c
y

0.999 0.998

(a) Accuracy.

0 1 2+
Errors in each Timestamp

100

101

102

103

T
im

e
s
ta

m
p
s
 C

o
u
n
t

1192

8

16

1184

CrossRoI

No-Filters

(b) Timestamps Distribution.

C1 C2 C3 C4 C5 Server
0

5

10

15

20

25

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
b
p
s
)

CrossRoI

No-Filters

No-Merging

Baseline

(c) Network Overhead.

CrossRoI
No-Filters

No-RoIInf
Baseline

10

30

50

70

S
e
rv

e
r

In
fe

re
n
c
e
 T

ro
u
g
h
p
u
t

(H
z
)

61.3
57.2

52.2 52.2

(d) Server Inference Throughput.

CrossRoI

No-Merging
No-Filters

Baseline
0

10

20

30

40

V
id

e
o
 C

o
m

p
re

s
s
io

n
 T

ro
u
g
h
p
u
t

(f
p
s
)

33.9 33.9

30.5

22.8

(e) Camera Compression Throughput.

CrossRoI
No-Filters

No-RoIInf

No-Merging
Baseline

0

1

2

3

E
n
d
 t

o
 E

n
d
 D

e
la

y
 (

s
)

1.611 1.6831.686
1.839

2.104

Server Delay

Network Delay

Camera Delay

(f) End-to-end Respond Latency.

Figure 8: Performance Evaluations between CrossRoI and alternative methods.

CrossRoI’s functional modules. The details of the alternatives are

as follows.

(1) Baseline: All CrossRoI functions are turned off. Video streams

are compressed with original H.264 compressor. The server runs

off-the-shelve YOLOv3 [35] model as object detector to handle

vehicle detection queries.

(2) No-Filters: Regression & SVM Filters 2 are turned off, but the

other modules remain. Raw ReID results are dumped into the

RoI masks generation framework. Cameras crop their video

streams in online phase based on the corresponding RoI masks.

(3) No-Merging: Tile Grouping Algorithm 5 is turned off, but

the other modules remain. The cameras compress their video

streams into fine-grained tiles without merging them into larger

ones.

(4) No-RoIInf: RoI-based CNN inference 6 is turned off, but the

other modules remain. RoI-YOLO model is replaced with off-

the-shelve YOLOv3 model in the GPU inference step 6 .

The evaluation results between CrossRoI and the four alternatives

are shown in figure 8.

5.2.1 Accuracy. As the dataset does not provide ground truth for

vehicle detection, we set the detection results generated by Baseline

method as the correct reference and fuse it with ReID ground truth

to obtain the correct baseline for unique vehicle detection task. The

Baseline method achieves 100% accuracy naturally as it sends full

video data. We present the accuracy achieved by CrossRoI and No-

Filters in figure 8a.CrossRoI achieves an accuracy of 99.9% that only

8 vehicles are missed in total 15424 vehicle appearances over 1200

timestamps. We plot the distribution of the timestamps in figure 8b

in terms of how many vehicles are missed at each timestamp. It is

easily observed that CrossRoI achieves correct detection for 1192

timestamps over the two minutes interval. There is at most one

vehicle missed in the other 8 timestamps. The accuracy of No-Filters

method is 99.8%. CrossRoI achieves a higher accuracy than No-

Filters with less video data because the regression filter rectifies

false positive associations in raw ReID results and improves the

overall accuracy.

5.2.2 NetworkOverhead. Wepresent network overhead for each

camera and server in figure 8c. CrossRoI consumes least bandwidth

compared to all other alternatives. The overhead of CrossRoI (15.2

Mbps) is by 42% reduced compared to Baseline method (26.2 Mbps).

Comparing with No-Filters (16.5 Mbps), CrossRoI reduces more

video redundancy by applying the SVM filter, which removes false

negative samples in raw ReID results and generates smaller-sized

RoI masks. CrossRoI reduces 30% network overhead compared

to No-Merging method due to applying tile grouping algorithm to

further improve the video compression efficacy.

5.2.3 System Throughput. We present inference throughput of

the server in figure 8d and camera video compression throughput

in figure 8e. The red lines represent the the minimum requirements

for real time execution. That is, the server inference speed needs

to be at least 50 Hz and the camera H.264 encoding throughput

should be no less than 10 fps.5 It can be observed that CrossRoI

achieves highest throughput on both server (61.3 Hz) and camera

(33.9 fps) sides. The RoI-based YOLO model improves overall server

inference throughput by 18%. Compared with No-Merging method

(33.9 fps), CrossRoI improves compression efficacy (i.e., reducing

video sizes) without degrading compression processing speed.

5.2.4 End-to-end Respond latency. As in figure 8f, CrossRoI

generates least end-to-end response delay (1.61 s) comparing to

5We reduce the video resolutions to 540 p for server inference due to the lack of strong
GPUs.

10

all the other alternatives. Compared with the Baseline case (2.104

s), CrossRoI reduces the latency by 25%. CrossRoI achieves less

latency compared to the other alternatives because either less net-

work overhead turns out to be less network delay or RoI-YOLO

design boosts server inference speed. In this evaluation, we set

the video streaming segment length as 1s. We notice that segment

length is a critical parameter to system end-to-end response delay.

We will provide more detailed discussion shortly in §5.3.

5.3 Sensitivity to Parameters

We investigate how three hyperparameters influence the perfor-

mance of CrossRoI as follows:

(1) SVM Model Non-Linearity. We fine tune the W parameter to

manipulate the non-linearity of the SVM filter model. A small

W associates to a low non-linearity SVM kernel which usually

can not fit training data perfectly and generates more outliers.

A large W corresponds to a kernel model of high non-linearity

which usually fits all the training data and cannot find outliers

from the training samples.

(2) RANSAC Threshold Distance. In the regression filter, we ma-

nipulate the residual-threshold parameter of RANSAC, which

determines the threshold distance for a sample to be regarded as

an outlier. Specifically, we set residual-threshold = \ ∗<03 ,

where<03 is the median absolute deviation of the training data

and the default residual-threshold value of RANSAC algorithm.

We fine tune different \ in the following evaluations instead.

(3) Segment Length. Segment length is the smallest temporal

unit when cameras stream live videos to the CrossRoI server.

Cameras compress all frames captured in the last segment in one

shot before send it to the server. Segment length has significant

influence on the network overhead and end-to-end latency.

The evaluation results are shown in figure 9, 10 and 11.

5.3.1 SVMModel Non-Linearity. As shown in figure 9, the sys-

tem accuracy, network overhead and end-to-end response latency

increase as W increases. A very small W causes the SVM Filters to

remove too much negative outliers, which usually includes true neg-

ative samples. Hence, accuracy gets hurt when SVM non-linearity

is very low. On the other hand, a small W leads to a smaller RoI mask

for each camera as it removes negative ReID results fiercely, and

thus, performs most significantly in reducing network overhead

and end-to-end delay. We choose W = 10
−4 in our system to achieve

best system accuracy.

5.3.2 RANSAC Threshold Distance. As shown in figure 9, the sys-

tem accuracy, network overhead and end-to-end response latency

decrease as \ increases. A very low residual-threshold causes

more positive ReID samples being detected as outliers, which usu-

ally leads to larger RoI regions for the cameras, and hence, improves

the system accuracy but hurts its efficiency. We use \ = 0.01 in our

system to achieve highest system accuracy.

5.3.3 Segment Length. We present the network-latency trade-

offs in figure 11 by tuning segment length parameter. segment

length is a very significant impact factor for end-to-end response

latency due to the queuing mechanism for video compression and

streaming. Comparing to frame-by-frame image sending, chunked-

video-based streaming causes data being queued at cameras mem-

ory, network interfaces and the server, and hence, increases the

end-to-end latency. However, longer segment size provides better

chance for cameras to compress the videos and significantly reduces

the network overhead. We choose 1s segment length in CrossRoI

to achieve least end-to-end delay.

5.4 Comparison & Integration with Frame
Filtering Systems

As mentioned in §2, significant frame filtering works have been

presented to alleviate resource contention for video analytics. For

example, Reducto [27], the SotA frame filtering system, optimizes

the cost/accuracy trade-offs by discarding frames in each segment

when streaming videos from camera to the server. Such systems

usually perform well when the query accuracy requirement is not

high, e.g. counting vehicle numbers roughly to understand current

traffic condition.

AsCrossRoI exploits spatial redundancy in closely located camera-

fleets, we treat frame filtering as an extra layer of optimization to

augment our system when the query accuracy requirement is not

very high (i.e. ≤ 95%). Specifically, we integrate Reducto into our

system to build CrossRoI-Reducto. Similar to CrossRoI, Reducto

also operates in two phases. It profiles video clips in offline phase

to learn video patterns and applies the learned-patterns as frame

filters to discard frames in online phase. It is natural to merge the

two systems and generate CrossRoI-Reducto, which also operates

in an offline-online mode.

The system workflow of CrossRoI-Reducto is shown in fig-

ure 12. In the offline phase, the CrossRoI module profiles offline

video clips to generate RoI masks. Reductomodule profiles “masks-

cropped” offline video clips to learn the video patterns and generates

frame filters for each camera. In the online phase, the video frames

first go through RoI masks to remove spatial repentant content

and then go through the frame filter to eliminate temporal redun-

dancy. The remaining data is compressed by the video compressor

as described in 5 and sent to server for CNN inference.

Reducto can adjust how fiercely to filter the frames based on

a given accuracy target (e.g. 90%). We set different accuracy tar-

gets from 85% to 100% and compare the system performance be-

tween Reducto and CrossRoI-Reducto. The evaluation results

are presented in table 4. As shown in table 4, we measure the the

frame-filtering capabilities of the two systems by showing how

many frames are removed, from total 6000 frames (5 cameras ×

120 seconds × 10 fps), in the video analytics process. Reducto

and CrossRoI-Reducto removes different number of frames under

same accuracy targets because full video and cropped videos ex-

hibit different patterns, which Reducto depends on to filter frames.

When we set the accuracy target as 100%, the frame filtering mecha-

nism fails to work. Reducto degenerates to be the Baseline scenario

and CrossRoI-Reducto degenerates to the original CrossRoI. In

all other scenarios, both Reducto and CrossRoI-Reducto achieve

the corresponding accuracy targets, while CrossRoI-Reducto out-

performs Reducto in all three system performance metrics signifi-

cantly, i.e. network overhead reduction by 48.3%, server throughput

boosting by 1.45× and end-to-end latency reduction by 25.8%.

11

1e-6 5e-6 1e-5 5e-5 1e-4
gamma

0.98

0.99

1.00

A
c
c
u
ra
c
y

0.995

0.997 0.998 0.998 0.998

1e-6 5e-6 1e-5 5e-5 1e-4
gamma

0

5

10

15

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
b
p
s
)

10.6

12.9
13.6

15.1 15.3

1e-6 5e-6 1e-5 5e-5 1e-4
gamma

0.0

0.5

1.0

1.5

2.0

E
n
d
 t

o
 E

n
d
 D

e
la

y
 (

s
)

1.383
1.492 1.514

1.606 1.628

Server Delay

Network Delay

Camera Delay

Figure 9: CrossRoI performance with different hyperparameter W (SVM model non-linearity).

0.01 0.05 0.1 1.0 10.0
theta

0.98

0.99

1.00

A
c
c
u
ra
c
y

0.999

0.997 0.997 0.997 0.998

0.01 0.05 0.1 1.0 10.0
theta

0

5

10

15

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
b
p
s
)

15.2 15.3 15.7

14.0 13.8

0.01 0.05 0.1 1.0 10.0
theta

0.0

0.5

1.0

1.5

2.0

E
n
d
 t

o
 E

n
d
 D

e
la

y
 (

s
)

1.614 1.607 1.625
1.533 1.535

Server Delay

Network Delay

Camera Delay

Figure 10: CrossRoI performance with different hyperparameter \ (RANSAC threshold distance).

1 1.5 2 2.5 3
Segment Length (s)

0

5

10

15

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
b
p
s
)

15.5

13.2
12.1 11.7 11.2

1 1.5 2 2.5 3
Segment Length (s)

0

1

2

3

4

E
n
d
 t

o
 E

n
d
 D

e
la

y
 (

s
)

1.588

2.264

2.934

3.677

4.363

Server Delay

Network Delay

Camera Delay

Figure 11: CrossRoI performance

with different segment length.

Accuracy

Target

Accuracy

Achieved

Frames

Reduced

Network

Overhead

(Mbps)

Server

Throughput

(Hz)

End-to-end

Respond

Latency (s)

Reducto

1.00 1.000 0 26.48 52.07 2.104

0.95 0.971 979 23.85 62.32 1.884

0.90 0.947 2098 19.29 80.19 1.602

0.85 0.902 4116 10.16 166.01 1.063

CrossRoI-

Reducto

1.00 0.999 0 15.73 (-40.6%) 61.28 (1.18 ×) 1.601 (-23.9%)

0.95 0.962 1072 13.28 (-44.3%) 74.17 (1.19 ×) 1.406 (-25.4%)

0.90 0.943 2389 10.48 (-45.7%) 101.22 (1.26 ×) 1.189 (-25.8%)

0.85 0.893 4483 5.25 (-48.3%) 240.95 (1.45 ×) 0.821 (-22.8%)

Table 4: Performance Comparison between Reducto and CrossRoI-Reducto. Bold

number represents performance gains (server throughput) or resource reduction (net-

work or latency overhead) of CrossRoI-Reducto compared to Reducto. Figure 12: CrossRoI-Reducto system overview.

6 CONCLUSION

In this work, we present CrossRoI, a resource-efficient system that

enables real time video analytics at scale via removing video content

redundancy across a fleet of cameras.We develop a two-phase work-

flow in CrossRoI. In the offline phase, CrossRoI establishes cross-

camera region associations to generate optimized RoI masks. In the

online phase, CrossRoI applies the RoI masks to boost real time

analytics performance. Experiments on real world traffic videos

show that CrossRoI reduces network overhead by 42% ∼ 65% and

reduces end-to-end response latency by 25% ∼ 34%when compared

to baseline methods while maintaining 99.9% detection accuracy.

ACKNOWLEDGMENT

This work was partially supported by the US Army Research Labo-

ratory under cooperative agreement W911NF17-2-0196. The views

and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the Army Research Laboratory or

the US government.

REFERENCES
[1] [n. d.]. 45 Billion Cameras by 2022 Fuel Business Opportunities. https://www.

ldv.co/insights/2017. Accessed: 2021-01-27.
[2] [n. d.]. Absolutely everywhere in Beijing is now covered by police video surveil-

lance. https://qz.com/518874/. Accessed: 2021-01-27.
[3] [n. d.]. Arecont Vision MegaVideo UltraHD. https://sales.arecontvision.com/

product/MegaVideo+UltraHD+Series/AV12ZMV-301. Accessed: 2021-01-27.
[4] [n. d.]. British transport police: CCTV. http://www.btp.police.uk/advice_and_

information/safety_on_and_near_the_railway/cctv.aspx. Accessed: 2021-01-27.
[5] [n. d.]. Can 30000 Cameras Help Solve Chicago’s Crime Problem? https://

www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html. Accessed:
2021-01-27.

[6] [n. d.]. FFmpeg. https://ffmpeg.org. Accessed: 2021-01-27.
[7] [n. d.]. Gurobi Solver. https://www.gurobi.com/. Accessed: 2021-01-27.
[8] [n. d.]. Logitech C930e BUSINESS WEBCAM. https://www.logitech.com/en-us/

products/webcams/. Accessed: 2021-01-27.
[9] [n. d.]. Scikit Learn. https://scikit-learn.org/. Accessed: 2021-01-27.
[10] [n. d.]. Tensorflow. https://www.tensorflow.org/. Accessed: 2021-01-27.
[11] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,

David G Andersen, Michael Kaminsky, and Subramanya R Dulloor. 2019. Scaling
video analytics on constrained edge nodes. arXiv preprint arXiv:1905.13536 (2019).

[12] Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt. 2019. Event-driven
stitching for tile-based live 360 video streaming. In Proceedings of the 10th ACM
Multimedia Systems Conference (MMsys). 1–12.

[13] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems (Sensys). 155–168.

12

[14] Sandeep P Chinchali, Eyal Cidon, Evgenya Pergament, Tianshu Chu, and Sachin
Katti. 2018. Neural networks meet physical networks: Distributed inference
between edge devices and the cloud. In Proceedings of the 17th ACM Workshop on
Hot Topics in Networks (HotNets). 50–56.

[15] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,
Henry Hoffmann, and Junchen Jiang. 2020. Server-Driven Video Streaming for
Deep Learning Inference. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication (SIGCOMM). 557–570.

[16] Zhou Fang, Dezhi Hong, and Rajesh K Gupta. 2019. Serving deep neural networks
at the cloud edge for vision applications on mobile platforms. In Proceedings of
the 10th ACM Multimedia Systems Conference (MMsys). 36–47.

[17] Xianglong Feng, Viswanathan Swaminathan, and Sheng Wei. 2019. Viewport
prediction for live 360-degree mobile video streaming using user-content hybrid
motion tracking. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT) 3, 2 (2019), 1–22.

[18] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[19] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen
Jiang. 2019. Pano: Optimizing 360 video streaming with a better understanding
of quality perception. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM). 394–407.

[20] Anhong Guo, Anuraag Jain, Shomiron Ghose, Gierad Laput, Chris Harrison, and
Jeffrey P Bigham. 2018. Crowd-ai camera sensing in the real world. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)
2, 3 (2018), 1–20.

[21] Zhiqun He, Yu Lei, Shuai Bai, and Wei Wu. 2019. Multi-Camera Vehicle Tracking
with Powerful Visual Features and Spatial-Temporal Cue.. In CVPR Workshops.
203–212.

[22] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their
applications 13, 4 (1998), 18–28.

[23] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and OnurMutlu. 2018. Focus:
Querying large video datasets with low latency and low cost. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 269–286.

[24] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and
Joseph Gonzalez. 2019. Scaling video analytics systems to large camera deploy-
ments. In Proceedings of the 20th International Workshop on Mobile Computing
Systems and Applications (HotMobile). 9–14.

[25] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, Victor Bahl, and Joseph Gonzalez. 2020. Spatula: Efficient cross-
camera video analytics on large camera networks. In ACM/IEEE Symposium on
Edge Computing (SEC).

[26] Peilun Li, Guozhen Li, Zhangxi Yan, Youzeng Li, Meiqi Lu, Pengfei Xu, Yang Gu,
Bing Bai, Yifei Zhang, and DiDi Chuxing. 2019. Spatio-temporal Consistency
and Hierarchical Matching for Multi-Target Multi-Camera Vehicle Tracking.. In
CVPR Workshops. 222–230.

[27] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication (SIGCOMM). 359–376.

[28] Bingyan Liu, Yuanchun Li, Yunxin Liu, Yao Guo, and Xiangqun Chen. 2020.
PMC: A Privacy-preserving Deep Learning Model Customization Framework for
Edge Computing. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT) 4, 4 (2020), 1–25.

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single shot multibox detector.
In European conference on computer vision (ECCV). Springer, 21–37.

[30] Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, BS Manjunath, Kevin Chan, and
Ramesh Govindan. 2019. Caesar: cross-camera complex activity recognition.

In Proceedings of the 17th Conference on Embedded Networked Sensor Systems
(Sensys). 232–244.

[31] Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. 2016. Large-scale vehicle re-
identification in urban surveillance videos. In 2016 IEEE International Conference
on Multimedia and Expo (ICME). IEEE, 1–6.

[32] Milind Naphade, Zheng Tang, Ming-Ching Chang, David C Anastasiu, Anuj
Sharma, Rama Chellappa, Shuo Wang, Pranamesh Chakraborty, Tingting Huang,
Jenq-Neng Hwang, et al. 2019. The 2019 AI City Challenge.. In CVPR Workshops.
452–460.

[33] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: A mobile deep learning framework for edge video analytics. In
2018-IEEE Conference on Computer Communications (INFOCOM). IEEE, 1421–
1429.

[34] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR). 779–788.

[35] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[36] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun. 2018. Sbnet:
Sparse blocks network for fast inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 8711–8720.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497 (2015).

[38] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi.
2016. Performance measures and a data set for multi-target, multi-camera track-
ing. In European conference on computer vision (ECCV). Springer, 17–35.

[39] Ergys Ristani and Carlo Tomasi. 2018. Features for multi-target multi-camera
tracking and re-identification. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). 6036–6046.

[40] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012.
Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions
on circuits and systems for video technology 22, 12 (2012), 1649–1668.

[41] JunjueWang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan
Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. 2018. Bandwidth-efficient
live video analytics for drones via edge computing. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 159–173.

[42] Qianru Wang, Junbo Zhang, Bin Guo, Zexia Hao, Yifang Zhou, Junkai Sun,
Zhiwen Yu, and Yu Zheng. 2019. CityGuard: citywide fire risk forecasting using
a machine learning approach. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT) 3, 4 (2019), 1–21.

[43] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560–576.

[44] Mengbai Xiao, Chao Zhou, Yao Liu, and Songqing Chen. 2017. Optile: Toward
optimal tiling in 360-degree video streaming. In Proceedings of the 25th ACM
international conference on Multimedia (ACM MM). 708–716.

[45] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun
Li. 2017. Lavea: Latency-aware video analytics on edge computing platform. In
2017 ACM/IEEE Symposium on Edge Computing (SEC). 1–13.

[46] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. 2017. Live video analytics at scale with
approximation and delay-tolerance. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 377–392.

[47] Shigeng Zhang, Yinggang Li, Xuan Liu, Song Guo, Weiping Wang, Jianxin Wang,
Bo Ding, and Di Wu. 2020. Towards Real-time Cooperative Deep Inference over
the Cloud and Edge End Devices. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT) 4, 2 (2020), 1–24.

[48] Liang Zheng, Yi Yang, and Alexander G Hauptmann. 2016. Person re-
identification: Past, present and future. arXiv preprint arXiv:1610.02984 (2016).

13

