
DeepRT: A Soft Real Time Scheduler for Computer Vision
Applications on the Edge

Zhe Yang, Klara Nahrstedt, Hongpeng Guo, Qian Zhou
Department of Computer Science

University of Illinois at Urbana-Champaign

{zheyang3,klara,hg5,qianz}@illinois.edu

ABSTRACT

The ubiquity of smartphone cameras and IoT cameras, together

with the recent boom of deep learning and deep neural networks,

proliferate various computer vision driven mobile and IoT appli-

cations deployed on the edge. This paper focuses on applications

which make soft real time requests to perform inference on their

data – they desire prompt responses within designated deadlines,

but occasional deadline misses are acceptable. Supporting soft real

time applications on a multi-tenant edge server is not easy, since the

requests sharing the limited GPU computing resources of an edge

server interfere with each other. In order to tackle this problem, we

comprehensively evaluate how latency and throughput respond to

different GPU execution plans. Based on this analysis, we propose

a GPU scheduler, DeepRT, which provides latency guarantee to

the requests while maintaining high overall system throughput.

The key component of DeepRT, DisBatcher, batches data from dif-

ferent requests as much as possible while it is proven to provide

latency guarantee for requests admitted by an Admission Control

Module. DeepRT also includes an Adaptation Module which tackles

overruns. Our evaluation results show that DeepRT outperforms

state-of-the-art works in terms of the number of deadline misses

and throughput.

1 INTRODUCTION

The ubiquitous smartphones and Internet of Things (IoT) platforms,

such as smart home solutions [2] and modern scientific experi-

ment frameworks [32], produce a tremendous amount of data every

day, especially video data. Meanwhile, we are also witnessing a

rapid development of deep neural networks, especially Convolu-

tional neural networks (CNNs), and their hardware accelerators

which empower fast and large-scale neural networks training and

inference. These two trends proliferate a wide variety of computer

vision applications across self-driving cars [9], mobile augmented

reality [23][26], mobile adaptive video streaming [45], and vehicle

re-identification in urban surveillance [28], to name a few. These

applications benefit from CNN’s excellent performance in making

predictions through incorporating inference of trained CNN models

into system design.
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However, using the CNN models to build vision applications does

not come for free. Smartphones or IoT devices usually do not have

sufficient computing or memory resources to support prompt CNN

inference in place. While offloading CNN computations to cloud

servers is an option [12][19], many works propose to perform deep

learning inference on the edge servers [15][22][48]. The reasons are

twofold: (1) Some data that need to be processed by CNN models,

e.g. images taken from smartphone cameras, contain private or

proprietary information. Users are reluctant to upload them to a

public cloud server for processing. (2) A lot of the aforementioned

applications are sensitive to latency, and require real time CNN

inference. For example, an interactive application typically requires

a response time less than 100 milliseconds [29]. But the wide area

network links between users and cloud servers exhibit the notorious

issue of unbounded delay and jitter, which could greatly undermine

user experience.

In this work, we limit our scope to handling these latency sen-

sitive applications on the edge. Specifically, we focus on soft real

time inference requests that desire real time responses but can

tolerate occasional deadline misses, such as mobile augmented re-

ality, mobile neural adaptive video streaming, and path planning in

self-driving [27]. In order to guarantee real time services, we can

certainly dedicate the deep learning accelerator on an edge server

to a single application, but it’s a waste of the precious accelerator

resources. Supporting multitenancy and sharing the computation

resources among multiple applications that have access to the edge

decreases the cost of each client, but it inevitably affects latency per-

formance of each application, as edge servers don’t have unlimited

resources due to space and budget limits.

Faced with the trade-off between reducing application latency

and increasing system throughput, a number of research approaches

are proposed. In [12], the authors propose a cloud based predic-

tion serving system. It employs adaptive batching to maximize

throughput while trying to reach a query latency target. However,

cloud based solutions cannot be directly migrated to the edge para-

digm. The reasons are twofold. First, cloud based solutions assume

that the resources are abundant. Second, cloud servers aim to pro-

vide services for plenty of users so they usually set throughput as

their primary goal, whereas clients seeking edge based services are

most concerned about low latency guarantee. In [16], an adaptive

batching algorithm is proposed to increase GPU utilization which

both increases system throughput and decreases average latency

of the tasks, but it does not target soft real time inference requests.

DeepQuery [15] considers real time tasks, but its major focus is to

optimize the non-real time tasks while totally isolating real time

tasks. As far as we know, none of the existing works propose a

soft real time CNN inference scheduler for GPU on the edge. We
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Figure 1: DeepRT system overview.

would like to ask this question: is it possible to provide soft real

time inference services to clients of an edge server while preserving

high throughput?

Designing such a system is challenging. First, in order to guar-

antee soft real time services while maintaining throughput perfor-

mance, it is necessary to inspect how different scheduling factors,

including the number of concurrent models and batching, affect

latency and throughput performance of the requests. Second, based

upon the understanding of the complicated relationship between

scheduling factors and system performance, and the fact that GPU

operations are non-preemptive [14], how should we schedule the

processing of requests to meet their deadlines while maintaining

high throughput? Specifically, if we employ adaptive batching that

batches data from different requests to increase throughput, we

need to be aware that data from different requests arrive inde-

pendently, and that data arriving early have to be queued to wait

for data from other requests in the same batch. How do we deter-

mine batch size to meet deadlines of all requests? And when we

obtain the batches, how to schedule their execution on GPU non-

preemptively? Third, after we determine the scheduling algorithm,

we need to design an appropriate admission control test in order

not to overload the system. If some tasks don’t proceed as expected

and cause deadline misses, we need a mechanism to tackle overruns

and resolve the issue of deadline misses as fast as possible.

In order to handle these challenges, we have done a compre-

hensive analysis of how inference performs under different factors,

and propose a GPU inference scheduler, DeepRT, which is able

to provide soft real time inference services for multiple requests

made from edge clients. Each request is to perform inference with

a client-specified CNN model on a video consisting of a series of

video frames which arrive at the system periodically. Specifically,

we first use an edge inference platform developed by NVIDIA,

Triton Inference Server [1], to study the latency and throughput

performance characteristics when there are multiple CNN model

instances to be executed and when request data are batched into dif-

ferent batch sizes. We have two key findings: (1) Executing multiple

model instances concurrently on GPU doesn’t significantly improve

throughput. On the contrary, it greatly increases latency and under

some circumstances makes it very difficult to estimate a worst-case

latency. (2) Batching is able to increase system throughput and

outperforms concurrent model instance execution in throughput

increase, but it also sacrifices inference latency. In light of these ob-

servations, we design the DeepRT system (see Figure 1), and within

DeepRT we put forward a batching mechanism, DisBatcher, which

is able to batch as many data in one batch from different requests

as possible, and we propose to execute the inference CNN models

over these batched data sequentially instead of concurrently. The

ordering of execution is determined by the Earliest Deadline First

(EDF) algorithm, since EDF is optimal in non-idling non-preemptive

scheduling. We also propose a two-phase Admission Control Mod-

ule which determines whether new requests should be admitted,

and an Adaptation Module which makes adaptation decisions in

case of job overruns. We show that DisBatcher guarantees real

time processing of all requests admitted by the Admission Control

Module. Our DeepRT design also makes it easy to support non-real

time requests, by batching them with the DisBatcher and assigning

the batched data from non-real time requests with a low priority.

Overall, this paper makes the following contributions:

• We perform a systematic analysis of latency and throughput

performance of CNN inference under multitenancy situation.

• We propose a complete set of solutions of a soft real time

CNN inference scheduler for GPU on the edge, including (1)

a Performance Profiler, (2) a two-phase Admission Control

Module , (3) a DisBatcher mechanism which batches image

frames from multiple requests, (4) using EDF to schedule the

batched jobs sequentially, and (5) an Adaptation Module. As

far as we know, we are the first to design a soft real time

CNN inference system over GPU on the edge.

• We conduct comprehensive experiments to validate the per-

formance of this system.

In this work we assume that each request is a video. With minor

modifications our system can also support the processing of other

types of data on GPU, e.g., IoT sensory data. It is also worth men-

tioning that we target building a GPU scheduler for edge servers

and the GPU uses the CUDA framework. This is the most common

hardware setting in edge based inference systems. Support for other

accelerators such as FPGA and TPU and for other frameworks such

as OpenGL are left to future work.

2 GPU EXECUTION CHARACTERISTICS

While there has been a tremendous amount of research endeavor

and industrial solutions aiming at optimizing the processing latency

and throughput of a single deep learning request on GPU, e.g., model

pruning, fewer works focus on the handling of multiple concurrent

requests, which is in fact an important scenario in edge computing.

In order to design an edge based system aiming at providing soft

real time inference services for multiple clients, first we need to

understand how GPU behaves under multiple requests. In this

section, we show the performance characteristics of processing

multiple deep learning requests on GPU, which is the foundation

of our soft real time GPU scheduler.
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(a) Median execution time when executing
multiple instances of the same model.

(b) Overall throughput when executing mul-
tiple instances of the same model.

(c) Median execution time when processing
data in batches.p

(d) Overall throughput when processing data
in batches.

p

(e) Comparison of execution time between
concurrent execution and batch processing.

(f) Comparison of throughput between con-
current execution and batch processing.

Figure 2: These figures show the execution time and throughput performance under different concurrency and batch size conditions. In (e)

and (f), “Cx By” means running x model instances concurrently while each instance processing batches sized y. “RN” refers to ResNet, “V”

refers to VGG, “Inc.” refers to Inception.

2.1 Experimental Settings for the Analyses

We mainly focus on the latency and throughput performance of

CNN inference. When batching is enabled, the latency 𝑙 of perform-

ing CNN inference upon some input data consists of two parts:

𝑙 = 𝑙𝑞 + 𝑙𝑒 , (1)

where 𝑙𝑒 is the real execution time of performing CNN inference

upon input data on GPU, and 𝑙𝑞 is the queuing time spent by some

input data that arrive early in waiting for input data that arrive

late. 𝑙𝑞 hinges on the specific design of the inference system, so

throughput this section we only measure 𝑙𝑒 and call it execution

time to avoid ambiguity.

All the performance measurements are carried out using a ma-

ture cloud and edge inference solution, Triton Inference Server

[1], developed by NVIDIA. The hardware setting is introduced in

Section 5. The way we measure execution time and throughput is as

follows. We use Triton’s perf_analyzer to send requests to Triton

server and record median execution time and throughput. Each

time we send one or several requests to the server for inference, de-

pending on the concurrency number, and each request may contain

one image or a batch of multiple images; when inference result is re-

ceived from the server, we immediately send out another request(s).

This process is repeated over a fixed time interval, 20 seconds. We

use images sized 3 × 224 × 224 (RGB channels × height × width),

which is the default image size in Triton. We choose 6 widely used

deep learning models – ResNet50, ResNet101, ResNet152, VGG16,

VGG19, and Inception-v3. They belong to 3 types, ResNet [21],

VGGNet [38], and Inception-v3 [39]. In our setting, ResNet and

VGGNet models are built upon the ONNX framework [5], and

Inception-v3 is of the GraphDef format [3], which is a tool used

by Tensorflow to represent models. Our setting covers different

types of models, different model sizes in each type, and different

frameworks to show the universality of our conclusions.

2.2 Concurrent Execution of Models

We first study the performance characteristics when executing

multiple models concurrently on GPU. To be more specific, there

are multiple model instances loaded on GPU, and these models

process image frames received from clients all at the same time; we

study how concurrency affects the execution of each model. This

analysis can be further divided into two parts: concurrent execution

of multiple instances of the same model on GPU, and concurrent

execution of different models.

Concurrent execution of the same model. When different

clients request to process their data with the same model, except

for batching the data and processing them as a whole in one model

instance, another common approach taken by Triton and some

platforms is to replicate the same model on GPU to get several

model instances, and to process each request with one of the model

instances concurrently. In this part we study the performance of

running different number of duplicate instances of the same model

concurrently (see Figure 2a and 2b). For Inception we show its

performance up to a concurrency number of 6, as more concurrent

instances overload the system. We have also recorded the variance

of different executions, but the variances are too small to display.

From Figure 2a we can see the linear relationship between exe-

cution time and the number of concurrent instances. We think this

is due to how CUDA schedules multiple programs. When multiple

programs run concurrently on GPU, CUDA schedules their warps

(a warp contains multiple CUDA threads which can be executed

in parallel) with a time sliced scheduler [42]. Warps from differ-

ent contexts cannot be executed simultaneously and some warps

have to wait in queue for their time slice share. When we execute

multiple instances of the same model, since all instances have ex-

actly the same warps but the warps are in different contexts, the

execution time of each warp grows linearly with the concurrency
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Execution time (ms)

- RN50 RN101 RN152 V16 V19 Inc.

RN50
3.5
(0.0)

6.4
(0.0)

6.9
(0.6)

7.1
(0.4)

11.2
(0.0)

11.6
(0.6)

5.8
(0.8)

RN101
6.4
(0.0)

11.1
(0.4)

11.8
(0.0)

12.0
(0.5)

18.0
(0.1)

20.3
(0.1)

9.0
(1.3)

RN152
9.0
(0.1)

15.5
(0.3)

16.4
(0.5)

16.8
(0.1)

24.6
(0.1)

27.6
(0.1)

14.6
(0.4)

V16
4.5
(0.0)

5.9
(0.2)

6.0
(0.4)

6.3
(0.2)

8.1
(0.0)

8.8
(0.0)

5.2
(0.5)

V19
5.3
(0.1)

6.9
(0.4)

7.0
(0.4)

7.4
(0.2)

8.8
(0.2)

9.6
(0.0)

6.1
(0.5)

Inc
9.3
(1.4)

25.3
(0.6)

29.0
(0.5)

28.9
(0.4)

37.6
(1.3)

42.9
(0.8)

15.2
(0.5)

Throughput (img/s)

- RN50 RN101 RN152 V16 V19 Inc.

RN50 282.1 155.8 145.4 143.4 89.2 87.1 174.7

RN101 154.9 90.4 84.7 82.1 55.6 51.0 103.1

RN152 111.6 64.2 60.9 59.6 40.7 36.8 69.1

V16 222.8 178.0 166.8 162.7 123.4 113.1 187.4

V19 190.5 148.3 144.4 142.9 113.1 103.8 162.1

Inc 105.9 39.7 34.4 34.5 26.6 23.6 65.5

Table 1: Execution time and throughputwhen running twodifferent

model instances concurrently.

number. Figure 2b shows how throughput changes with the concur-

rency number. We can see that if we increase concurrency number

to 2, there is a slight increase in throughput, but afterwards the

throughput stays at a stable value.

A crucial conclusion we draw in this part is that, although increas-

ing concurrency to a certain level can improve inference throughput

by a small margin, execution time increases linearly as concurrency

number grows. Let’s look at an example to see how this observation

affects scheduling algorithm design. Imagine there are two images

to be processed with a specified model, say, ResNet50. Processing

the two images one by one inside one single model instance instead

of processing them concurrently in two model instances, achieves a

slightly lower throughput but the average latency is reduced by 25%,

since the first image is finished early and its execution time is not

affected by the concurrent execution of the second image. There-

fore, the latency of the first image is reduced by half compared

to running concurrently, while the latency of the second image

remains approximately the same as when running concurrently.

Concurrent execution of different models. A common prac-

tice of Triton Inference server and other solutions when different

clients send requests to process data with different models is to exe-

cute the models simultaneously. This part analyzes the performance

characteristics when different models run concurrently on GPU.

Among the 6 models introduced previously, in each experimental

run we choose two models and execute them concurrently1. The

other experimental setups are the same as in the previous part.

In Table 1, we show the median execution time and throughput

when executing a model specified by the leftmost column concur-

rently with another model specified by the uppermost row. As a

comparison, we use the columns marked by “-” to show the perfor-

mance when a model is executed alone. The data show that when

1In this analysis, we study how the execution of a model is affected by another model
instance. We don’t analyze the situations where there are three or more instances
since the current setting already shows the complicated interference between model
executions.

a model M is executed along with different other models, its execu-

tion time and throughput performance vary greatly2. Explaining

such an observation requires a detailed study of how internal sched-

uling happens at a low level on GPU, which is very difficult since

GPU drivers are not open sourced. Our hypothesis is that different

kernel (a CUDA function) sizes of different models cause different

slowdowns. CUDA uses a time sliced scheduler to schedule pro-

grams from different contexts (corresponding to different models)

and the kernels are the smallest scheduling unit. They get sched-

uled non-preemptively on GPU. Different models are composed of

distinct numbers and types of kernels; when a model M is executed

concurrently with model N and the kernels of M are larger in sizes

but smaller in quantity, model M will have more GPU time share

and thus exhibit higher throughput and smaller execution time.

The observation we make from this part, is that concurrently

executing multiple instances of different models results in complex

interference between models. If we want to design a real time

system, we need to figure out the interference in any subset of all

admitted models in order to obtain their worst-case execution times.

When there are 𝑧 models, there are
(𝑧
2

)
combinations of models to

profile if we only execute two model instances concurrently. In fact,

if we allow any number of concurrent model instances, we need to

profile
∑𝑧
𝑘=1

(𝑧
𝑘

)
= 2𝑧 combinations of models, which is practically

impossible. However, if we manage to execute the different model

instances sequentially instead of concurrently, there won’t be any

interference between the sequential model executions.

2.3 Inference in Batches.

A well-known conclusion about GPU-based deep learning model

training and inference is that batch processing can boost their

throughput. In this part we show the performance characteristics

when we do inference in batches. The experimental setup of this

part is the same as in the previous two parts, except that each time

we only execute one model instance instead of concurrently execut-

ing two or more instances. The comparison between different batch

sizes is shown in Figure 2c and Figure 2d. As expected, batching

increases throughput with a cost of higher execution time.

2.4 Concurrent Execution vs Batch Processing

Since concurrent execution of multiple instances and batching in-

puts into larger tensors can both process multiple requests simulta-

neously, in this part we compare how these two approaches affect

system performance. On each of the aforementioned 6 models,

we fix the number of concurrently processed requests (concurrent

model instances × batch size) and see how the execution time and

throughput vary. The result is shown in Figure 2e and Figure 2f,

where we compare concurrency - batch combinations of 4× 1, 2× 2,

and 1 × 4. We can see that batch processing should be favored over

concurrent model instance execution in terms of increasing system

throughput and reducing request execution time.

2.5 Summary of Observations

In summary, We make three observations:

2There is an observable trend, however, that when a model is executed concurrently
with models of the same type (e.g., a ResNet101 model and a ResNet152 model), the
performance tend to be similar, but performance discrepancy still exists. This trend is
a piece of evidence for our following hypothesis. The kernels of models belonging to
the same type have similar sizes, thus they cause similar amount of interference.
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• Executing two or more models simultaneously does not no-

tably improve system throughput, and it increases latency

of each request due to increased execution time.

• When executing multiple instances from different models on

the same GPU, there exists interference between concurrent

executions, making it cumbersome to profile or estimate the

worst-case execution time, hindering the design of a real

time system.

• Processing input data in batches increases system through-

put, much more than concurrent model execution does, with

a sacrifice of increased request execution time.

Two key takeaways from these observations are: (1) Concur-

rently executing multiple model instances does not provide high

value to our goal of guaranteeing maximum latency while main-

taining high throughput; instead, the interference it introduces

makes designing a real time system difficult. So we would like to

execute model instances sequentially instead of concurrently to

avoid interference. (2) Batching increases throughput , but we need

to make sure that the increased latency (increased execution time

plus queuing time when an image frame waits for other frames

belonging to the same batch) does not cause deadline misses.

3 DEEPRT SCHEDULING SCHEME

Based upon the observations we make in the previous section, we

propose the soft real time scheduling scheme of DeepRT, which

is proven to meet the deadlines of admitted requests while being

able to process input data in batches in order to boost inference

throughput. Specifically, we propose a batching approach called

DisBatcher, which batches input data from multiple requests ac-

cording to their release times and deadlines, and pushes the batched

data to a deadline queue to be processed by the GPU. We propose

to schedule the execution of the batches with EDF. Then we prove

that DisBatcher ensures all deadlines of the input data are met if

the batches can be scheduled with EDF.

3.1 System Model

Data Model. This paper assumes that the GPU resources on the

edge are shared by multiple users. Each user sends a request to

DeepRT, and each request corresponds to a video, the frames of

which need to be processed by a user-specified CNN model. Dif-

ferent users may request different CNN models. When a request

comes, if DeepRT confirms that the new request and all the existing

requests in the system can be scheduled, DeepRT will admit the new

request3. The video frames of an admitted request arrive at DeepRT

in an online manner, and the interval between two frames is deter-

mined by a frame rate, or period4. Each request also has a relative

deadline, indicating the desired maximum latency of performing

inference on each of the video frames. The relative deadline of a

request is not necessarily equal to its period. Different videos may

have different input shapes, which equal to the number of channels

3In this paper, we use admitted requests and requests interchangeably, and we call
requests that wait to be verified pending requests.
4We only consider the scenario where all frames are raw, uncompressed video frames.
Decompression of compressed frames should be coordinated by a CPU scheduler and
is not the scope of DeepRT. Also, we assume that the frames in a video arrive one by
one, but DeepRT can also handle the situation where a chunk of frames arrive at a
time, used by video coding techniques like H.264.

(most videos use RGB channels so this number is 3) × frame height

× frame width.

ExecutionModel. The two key takeaways from Section 2 drive

us to avoid concurrent model execution and leverage batching to

increase system throughput. We propose the following execution

model for DeepRT. When a frame from a request arrives, DeepRT

does not process this frame immediately. Instead, DeepRT waits for

frames of the same shape requiring the same CNN model, batches

these frames together, and processes the batched data on GPU. In

fact, all frames that are of the same shape and require the same

model can be batched together regardless of which request they

belong to, while frames with different shape or require different

models should not be batched because GPU cannot execute in par-

allel the same kernels for these frames. Since the batch of frames

from multiple requests is what the GPU actually executes, we call

the job of processing a batch of frames a job instance. DeepRT pro-

cesses multiple job instances one at a time instead of concurrently.

In DeepRT, the frames with the same shape requiring the same

model are said to be of the same category. Likewise, we call the

requests containing the same category of frames to be of the same

category. Executing job instances sequentially instead of concur-

rently makes Equation 1 become 𝑙 = 𝑙𝑞𝑏 +𝑙𝑞 𝑗 +𝑙𝑒 , where 𝑙𝑞𝑏 denotes

frame queuing time waiting for other frames in the same batch, and

𝑙𝑞 𝑗 denotes queuing time of a job instances. In order to provide a

guarantee on 𝑙 , two questions need to be answered: (a) How many

frames should be in each batched job instance, or how does DeepRT

determine which frames should be put into the same batch? (b)

GPU operations are non-preemptive, in the sense that operations

already launched on GPU cannot be preempted. How to schedule

the non-preemptive batched job instances?

3.2 DeepRT Batching Approach

This subsection answers the first question. There are already re-

search efforts [12][15] or industrial solutions [1] which process

batches containing fixed or adaptive number of images from mul-

tiple requests concurrently. While these approaches are capable

of increasing inference throughput and reducing latency, their ap-

proaches don’t support real time services, since they don’t have

a deadline-centric soft real time design. A real time system with

batching enabled has to make sure the queuing time of a frame

arriving early waiting for frames arriving late does not cause a

deadline miss of the early frame.

In order to guarantee real time processing of frames, instead of

answering the question “what is the right number of frames inside

a batch”, we try to answer another question “when should a frame

be put inside a batch”. We propose the DisBatcher approach to

answer this question. DisBatcher divides time into contiguous time

intervals with the same length, called time windows. The end time

of a window coincides with the start time of next time window.

Frames that fall into the same time window should be batched to-

gether into one job instance regardless of which request the frames

belong to, as long as the frames are of the same category, and the

batching action happens at the end of a time window. DisBatcher

sets the relative deadline of a job instance to be the length of one

time window, which means that a job instance generated at the end

of one time window, should be completed before the end of the next

time window. For simplicity, We call the end time of a time window,
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Figure 3: An illustration of our batching mechanism. We show how two requests of category a are batched into a task instance. The dashed

lines represent the arrival times of frames, and the arrows pointing upward represent their deadlines. Frames of category a are batched into

a job instance if they arrive during the same time window. Then the job instance are pushed to a deadline queue for processing.

which is also the start time of the next time window, a time window

joint. As we previously mentioned, frames of different categories

should not be batched together. DisBatcher creates different and

independent time windows for each category of frames. With this

time window approach, we transform the processing of one cate-

gory of requests into a series of non-preemptive job instances, or

a task instance. A task instance’s relative deadline is equal to its

period, which is the length of the time window used to generate the

task instance. This task instance is not strictly a periodic task, since

each job instance has different execution times due to different

number of frames inside the batches, and some job instances have

0 as their execution times (no frames in this batch). An example of

using time windows to batch frames is shown in Figure 3.

How to set appropriate time window lengths in order to ensure

that for all frames their latencies do not exceed their deadlines

remains a challenge. DisBatcher utilizes a deadline-centric design.

For one category of requests, DisBatcher sets the time window

length to be half of the smallest relative deadline among all requests,

regardless of other parameters such as request arrival periods. In

fact, we have the following theorem.

Theorem 1. Given a set of deep learning inference requests 𝐼 . Each
request 𝐼

𝑔
𝑚, 𝑔 ∈ Γ,𝑚 ∈ 𝑀𝑔 consists of a series of frames which need to

be processed by GPU, where Γ denotes the set of all request categories

and𝑀𝑔 denotes the set of all requests in category 𝑔. Each request also

has a relative deadline 𝑑
𝑔
𝑚 . A request is schedulable if the latency of

each frame is smaller than or equal to 𝑑
𝑔
𝑚 . Likewise, we call a job

instance schedulable if its latency is no larger than its deadline.

If we use the time window scheme to batch process the frames with

the time window length of each category𝑊𝑔 set to

𝑊𝑔 =
1

2
min
𝑚∈𝑀𝑔

𝑑
𝑔
𝑚, 𝑔 ∈ Γ, (2)

all requests in 𝐼 are schedulable if the periodic batched job instances
are schedulable.

Proof. When the length of time windows of a request category

is equal to a half of the smallest relative deadline in this request

category, for all the frames in all the requests of this category, there

are at least two time window joints between the arrival time and

the deadline of a frame (inclusive). This argument is illustrated in

Figure 3, where the length of time windows is set to be smaller than

half of the smallest relative deadline.

All frames of the same category that arrive at the same time

window are batched at the end of the current time window , which

is also the first time window joint they encounter. Since the batched

job instance takes the next time window joint as its deadline, all

frames can be finished processing before the second time window

joint if the batched job instance meets its deadline. Since there are

at least two time window joints between the arrival time of a frame

and the deadline of a frame, the deadline of a job instance will be

earlier than the deadline of all its corresponding frames. Therefore,

if the job instances are schedulable, so will be the frames. �

3.3 Job Instance Scheduling with EDF

With the DisBatcher approach, we transform the problem of how

to batch and schedule frames in real time to the problem of sched-

uling a set of non-preemptive periodic task instances. The new task

instances are not strictly the traditional non-preemptive periodic

tasks, since job instances of the same task instance have variant

execution times.

The non-preemptive periodic tasks whose jobs have variant exe-

cution times are called non-preemptive multiframe tasks [31][10][7].

Non-preemptive periodic tasks with fixed execution times are a spe-

cial case of non-preemptive multiframe tasks. There are two types

of scheduling algorithms for non-preemptive multiframe tasks —

algorithms that do not permit the processor to be idle when there

are jobs that have been released but have not completed execu-

tion (non-idling), and algorithms that allow idle times (idling). For

DeepRT, we choose non-idling Earliest Deadline First (EDF) as its

scheduling algorithm, the reasons of which are twofold.

First, the inserted idle times lead to a waste of precious GPU

computation power, sacrificing the total throughput of the system.

Second, although some idling algorithms can perform better than

non-idling algorithms in terms of the number of schedulable tasks

[13], they often depend on complicated heuristics, and their perfor-

mance gains are only demonstrated through simulations. In fact,

finding an optimal schedule in idling non-preemptive context is an

NP-hard problem [17]. On the contrary, EDF has been shown to be

an optimal scheduling algorithm for non-preemptive multiframe

tasks in non-idling context [18][8][10]. In Section 4, we will discuss
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how DeepRT performs admission control in order to make sure

that all job instances are schedulable.

It is worth mentioning that the scheduling scheme of DeepRT

makes it easy to support non-real time requests. We treat non-real

time requests in a similar way with real time requests. We also use

DisBatcher to batch non-real time requests to transform the frames

into task instances. However, we don’t batch non-real time requests

together with real time requests for performance isolation; we use

a large time window for non-real time requests to make sure they

obtain a low deadline priority, and we impose them a large arrival

period regardless of their true arrival periods so that they don’t

aggregate to large batches and cause too much priority inversion.

4 DEEPRT SYSTEM DESIGN

In this section we present the whole system of DeepRT, shown

in Figure 1. DeepRT is a scheduling system built on top of the

scheduling scheme presented in the previous section, aiming at

providing a soft real time inference service for CNN models on GPU.

DeepRT consists of 5 parts: a Performance Profiler, a two-phase

Admission Control Module, a DisBatcher, an Execution Worker,

and an Adaptation Module.

4.1 Performance Profiler

Our Performance Profiler works offline. For each deep learning

model that we want to execute at the edge server, for each frame

shape that DeepRT permits as legitimate shape, and for different

batch sizes, the Performance Profiler executes each batch of frames

on GPU multiple times, and records the execution time of each

run. For each setting, we obtain a list of running times and take

the worst-case running time5. In this way, we create a lookup table

containing the execution times of different sized batches of frames

with different shapes processed by different deep learning models.

Whenever a new request comes to the system, we look up this table,

find the corresponding model and shape, and feed the results to

Admission Control Module to make admission decisions.

4.2 Admission Control Module

When a new request arrives at DeepRT, it is first routed to the Ad-

mission Control Module. Since we target building a soft real time

system, DeepRT is selective with the requests in case too many

requests cause serious deadline misses. The Admission Control

Module decides whether a pending request is admitted to DeepRT.

As we discussed in Section 3, DeepRT uses DisBatcher to transform

frames into task instances, which are intrinstically non-preemptive

multiframe tasks. Therefore, performing admission control for Dis-

Batcher based DeepRT is equivalent to performing admission con-

trol for non-preemptive multiframe tasks.

Some past works propose to perform admission control for EDF

under the non-preemptive multiframe workload scenario using

demand-bound functions [6][7][8][10]. A demand bound function

represents the maximum execution demand of a task set in any

time interval of a given length. Then this approach compares the

demand bound with available resources to decide whether a task

set is schedulable. This approach suffers from pseudo-polynomial

complexity and inaccuracy of their approximate algorithms in cal-

culating the demand bound functions. Another approach performs

5In practice we take 99 percentile running time to filter out outliers.

simulation based feasibility analysis [31]. Basically this approach

represents time with a clock variable. When the clock reaches the

arrival time of a job, the job is released to a deadline queue. It simu-

lates the execution of the job by simply incrementing the clock by

the job’s worst-case execution time. Then it compares the virtual

completion time of the job, which is the current value of the clock

variable, with the job’s deadline, to determine whether there is a

deadline miss. Since different tasks may have different initial release

times, this approach uses a tree to represent all possible execution

sequences, making its time complexity non polynomial.

Since the goal of DeepRT is to provide real time inference while

maintaining high throughput, the Admission Control Module should

admit as many requests as possible but not too many requests which

overload the system. Therefore, it has to perform an exact analysis

of schedulability. DeepRT adopts the simulation based approach as

it is an exact analysis. The time complexity of this approach can be

greatly reduced in DeepRT to linear with respect to the number of

frames. The reason is that in DeepRT the requests for inference all

have specific release times, because users’ video frames occur at

specific times instead of at arbitrary times, and the release times

are communicated with the Admission Control Module. Since we

also know the time when every time window starts, we can know

the release times of all job instances. In this way, we know exactly

when and in what order each job instance “arrives” at the GPU,

so we can build an exact execution schedule in linear time instead

of building a tree of execution sequences. Note that in building

such an execution schedule, DeepRT requires the execution times

of different job instances obtained in Section 4.1. The assumption

for the exact schedulability analysis is thus accurate job instance

execution time profiling.

To further improve the Admission Control Module by reducing

its complexity, before we run the simulation based schedulability

test, we first use a utilization based test to filter out obviously

infeasible requests. The goal of the utilization based Phase 1 test is

to reject a pending request as fast as possible which will obviously

cause deadline misses if accepted. The simulation based Phase 2

test is an exact test, which refines the results from Phase 1 test and

ultimately decides whether the new request gets admitted.

Phase 1. In Phase 1, DeepRT uses the utilization of task instances

to reject a pending request that will obviously cause deadline vio-

lations. We calculate and evaluate the utilization of task instances

because task instances are actually executed by the GPU . We define

the average utilization of a task instance 𝑠 to be

𝑈𝑠 =

∑𝑁𝑠
𝑖=1 𝐸𝑖

𝑁𝑠𝑃𝑠
, (3)

where 𝑁𝑠 denotes the total number of job instances in task instance

𝑠 , and 𝑃𝑠 is the period of 𝑠 which equals to the time window length

used to generate 𝑠 . Within each period there is at most one job

instance. 𝐸𝑖 denotes the execution time of a job instance 𝑖 belonging

to 𝑠 . We further define the average utilization of a task instance

set Σ to be 𝑈 =
∑
𝑠∈Σ𝑈𝑠 . The task instance set comprises task

instances generated from all existing requests and the new pending

request. Naturally in order not to overload the system, we should

have 𝑈 ≤ 1, or
∑
𝑠∈Σ

∑𝑁𝑠
𝑖=1 𝐸𝑖
𝑁𝑠𝑃𝑠

≤ 1. The complexity of calculating
∑𝑁𝑠
𝑖=1 𝐸𝑖 is linear with respect to 𝑁𝑠 , since we need to estimate the
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number of frames that fall inside each time window, and look up

the profiling execution time table to decide 𝐸𝑖 .
In order to boost the speed of Phase 1, we make an approximation

when calculating𝑈𝑠 . As the complexity of calculating
∑𝑁𝑠
𝑖=1 𝐸𝑖 comes

from the fact that we don’t know how many frames fall into each

batch, we use an average number of frames over all time windows

to estimate the exact number of frames in each time window. We

denote the set of requests of the same category with 𝐼𝑔 . The average

number of frames inside a time window of a request 𝐼
𝑔
𝑚 ∈ 𝐼𝑔 is

𝑊𝑔

𝑝
𝑔
𝑚

, where 𝑊𝑔 is the period of the corresponding time window,

and 𝑝
𝑔
𝑚 is the period of request 𝐼

𝑔
𝑚 . Therefore, for all the requests

of category 𝑔, the average number of frames in one time window,

denoted by 𝑛𝑔 , can be represented by 𝑛𝑔 = �
∑
𝐼
𝑔
𝑚 ∈𝐼𝑔

𝑊𝑔

𝑝
𝑔
𝑚
� . We look

up the execution time 𝐸𝑛𝑔of a batch of 𝑛𝑔 frames from the table

and we can get an estimation of 𝑈𝑠 :

𝑈𝑠 =
𝐸𝑛𝑔

𝑃𝑠
. (4)

Please note that Phase 1 accepts more pending requests than

DeepRT can handle while not rejecting feasible requests by under-

estimating total workload. The reasons of this underestimation are

twofold. First, it’s clear that the sufficient necessary condition for a

set of periodic preemptive tasks to be schedulable is that the total

utilization is no larger than 1; but this is only a necessary condition

for preemptive multiframe tasks [30], let alone non-preemptive

multiframe tasks in our scenario. Second, we use an estimated av-

erage utilization of a task instance which doesn’t consider peak

utilization. Also, we use a floor operator in calculating 𝑛𝑔 above. In

this way, Phase 1 admission control can give prompt responses to

some clients and reduces some workload for Phase 2.

Phase 2. While DeepRT’s Phase 1 test admits requests gener-

ously, the Phase 2 test does an exact schedulability analysis to

control admission to the system. The Phase 2 test consists of three

sequential steps — system state recording, pseudo job instances

generation, and an EDF imitator algorithm.

In the first step, system state recording, the Admission Control

Module captures the current system state, which includes four parts:

(1) the number of frames of each category that have already arrived

at DeepRT and wait to be batched by the DisBatcher, (2) the already

batched job instances in the deadline queue waiting to be processed

by GPU, (3) the periods of all time windows, and (4) the period

and number of remaining frames of each request. Essentially these

four parts describe the existing system workload, and how to batch

image frames to job instances.

Once the Admission Control Module learns about the current

system state, it proceeds to the second step, where it simulates the

process of DisBatcher and generates pseudo job instances from

all the requests, including the pending request being tested. It im-

plements a virtual representation of the DisBatcher mechanism

introduced in Section 3, where the time and workload are both

simulated. For each request, the Admission Control Module esti-

mates the arrival time of each frame using its period, and compares

the arrival time with the starting time and end time of the time

windows to see which window each frame falls into. In this way the

Admission Control Module is able to know the number of frames

to be batched in each window. The Admission Control Module

looks up the execution time of each batched job instance from the

Algorithm 1: EDF imitator algorithm

Input: Sorted deadline queue 𝑄 , list of job instances 𝐿
ordered by release times

Output: Whether the jobs are schedulable with EDF

1 Initialization: 𝑡 ← 0;

2 while 𝑄 not empty or 𝐿 not empty do

3 if 𝑄 is empty then

4 release job 𝑖 from 𝐿 to 𝑄 ;

5 𝑡 ← 𝑅𝑖 ;

6 else

7 pop job 𝑘 from 𝑄 ;

8 𝑡 ← 𝑡 + 𝐸𝑘 ;

9 if 𝑡 > 𝑅𝑘 + 𝐷𝑘 then

10 return not schedulable

11 end

12 while 𝐿 not empty and 𝑅𝐿 [1] < 𝑡 do
13 release job 𝑖 from 𝐿 to 𝑄 ;

14 end

15 end

16 end

17 return schedulable

execution time table to get a list of virtual job instances. This list

contains the “future” job instances from all task instances, and the

job instances are ranked according to their release times, which

is the time when a job instance is pushed to the deadline queue.

This is done through simultaneously running the aforementioned

DisBatcher simulator over all categories of requests and appending

the job instance with the smallest release time to the list each time.

With the system current state captured from Step 1 and the

future virtual job instances obtained from Step 2, the Admission

Control Module moves to step three, where it uses an EDF imitator

algorithm to determine whether these job instances can be sched-

uled by EDF. The EDF imitator algorithm is shown in Algorithm 1.

In this algorithm,𝑄 is a sorted deadline queue storing job instances,

and 𝐿 is the list of job instances obtained from Step 2 which are

released in the “future”. Note that 𝐿 is already ordered by release

times. We use 𝑅𝑖 to denote the release time of a job 𝑖 , 𝐸𝑖 to denote

the execution time of a job 𝑖 , 𝐷𝑖 to denote the relative deadline of 𝑖 ,
and 𝐿[1] to denote the 1𝑠𝑡 element of list 𝐿. The complexity of this

algorithm is 𝑂 (𝑁 ), where 𝑁 is the total number of frames.
4.3 DisBatcher Module and Execution Worker

DisBatcher is the core component of DeepRT. It is responsible for

transforming frames received from admitted user requests to job in-

stances that are suitable to execute on GPU. It’s an implementation

of the batching approach presented in Section 3.

Once a request is admitted by the Admission Control Module, the

Admission Control Module sends request-related metadata includ-

ing frame shape, requested model, period, and relative deadline to

the DisBatcher. Then clients will directly send frames to DisBatcher.

DisBatcher keeps track of all the admitted requests in DeepRT,

together with their metadata. DisBatcher manages a frame queue

for each category of requests. These queues store frames which

arrive during their time windows and wait to be aggregated into
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batches of frames, or tensors. DisBatcher utilizes reccurent count-

down timers to implement time windows. It keeps a timer for each

category of requests with the timer’s countdown interval equal to

the time window length. When a timer expires, DisBatcher batches

all the frames in its corresponding queue to a tensor and imme-

diately starts timer countdown again. Whenever a new request is

admitted, DisBatcher updates the countdown interval of the cor-

responding timer if the new request’s relative deadline is smaller

than the current smallest deadline.

The DisBatcher wraps a tensor inside a new job instance, the rel-

ative deadline of which is equal to the corresponding time window

length, and it pushes this job instance onto an execution queue. A

Worker on GPU subscribes to this execution queue and processes

the job instances according to EDF. We implement the execution

queue with a priority queue. The priority is determined by the job

instances’ absolute deadlines (release time + relative deadline).

The Worker is the execution engine which actually processes

the batched job instances with a requested model on GPU. It repeat-

edly consumes the execution queue mentioned above whenever

there are job instances inside. It processes the job instances one

after another. The Worker is also responsible for monitoring the

performance of execution. It detects and records deadline misses. It

also detects whether the execution time of a job instance is larger

than the profiled worst-case execution time and report overruns to

the Adaptation Module.

We employ an optimization technique to further reduce frame

latency. Occasionally GPU is idle while there are frames which

have already arrived but wait to be batched by DisBatcher. When

DeepRT detect this situation, it batches the frames before their

timer expires and immediately sends the batched job instance to

GPU for processing. In this way, DeepRT can reduce the latency of

these frames and meanwhile increase the utilization of GPU.

4.4 Adaptation Module

Since the hardware devices upon which DeepRT operates are com-

mercial off-the-shelf computing devices that don’t have any hard

deadline guarantees, DeepRT is only able to provide soft real time

services. The response time of processing the same request under

the same setting may vary between different runs, occasionally lead-

ing to job overruns. As the GPU executes jobs non-preemptively

and we use EDF, one single job overrun can possibly cause unpre-

dictable deadline misses of many other jobs in the system. When

overruns happen, we need a method to “punish” the overrun job,

and more importantly, to avoid deadline misses as much as possible.

In DeepRT, each job instance category has a penalty initialized

to be 0. When the Worker observes that the execution time of a

job instance exceeds the profiled execution time, the Adaptation

Module will increase the penalty of the job instance category by

the excess part. Meanwhile, the Adaptation Module informs the

DisBatcher to decrease the shape (resolution) of tensors belonging

to that category. These tensors will not be batched with other

tensors with the same smaller shape in order not to disturb job

instances’ priorities. The Worker will record the execution time

of the new job instance and subtract the saved execution time

from penalty. When penalty becomes non positive, the Adaptation

Module commands the DisBatcher to resume the original shape of

the overrun job instance and sets its penalty back to 0.

5 IMPLEMENTATION

This section presents the implementation details of DeepRT. All the

scheduling actions of DeepRT occur on CPU except the executions

of CNN inference job instances. In order to make sure that DeepRT

gives prompt scheduling decisions, we assign the DisBatcher with

the highest Linux user-space priority by setting its nice value.

We implement DeepRT with the deep learning framework Py-

torch in Python. However, the mechanism of DeepRT is completely

framework agnostic. For communication between DeepRT modules,

we use a light-weighted messaging library ZeroMQ.

We use two edge devices equipped with GPUs to run and evaluate

DeepRT. The first device we use has a GeForce RTX 2080 Graphics

Card with 2944 CUDA cores. It has an Intel i7-9700K 8-core CPU

and 64GB memory. The second device is an NVIDIA Jetson TX2 De-

veloper Kit. Jetson TX2 is a computer specially designed to provide

deep learning inference services on the edge. It is equipped with a

GPU with 256 CUDA cores. It has a 6-core CPU with 8GB memory.

6 EVALUATION

We evaluate DeepRT by answering these questions:

• How well does DeepRT perform in terms of meeting deadline

requirements as compared to state-of-the-art latency-centric

CNN inference scheduling approaches?

• Is DeepRT able to provide high throughput while guarantee-

ing soft real time services?

• How effective is the Admission Control Module in making

schedulability decisions for new requests? What’s the over-

head of running this module?

• How robust is DeepRT against overruns and how quickly

can DeepRT bring the system back to normalcy?

6.1 Experimental Dataset

We use the DAVIS dataset [35] as the workload. This dataset consists

of video frames of 480p (480×854) and 1080p (1080×1920) resolution.

We also downsample the video frames to various resolution formats

in order to enrich the request data. On the desktop computer with

an RTX 2080 card, we set the request video data to have 3 resolution

formats: 1080 × 1920, 480 × 854, and 240 × 352. On the Jetson TX2,

as its computing power is smaller, we use frames of 360 × 640,

240 × 352, and 224 × 224. All videos are colored videos and they all

have the 3 RGB channels. It is worth mentioning that DeepRT is

agnostic of video contents since different videos exhibit the same

characteristics when being processed by classification models.

6.2 DeepRT vs. Existing Inference Systems

In this part, we compare the performance of DeepRT and the state-

of-the-art CNN inference systems with respect to their abilities to

meet the latency requirements specified by user applications.

Baseline.We compare DeepRT against these approaches which

enable batching or adaptive batching to achieve low-latency high-

throughput inference:

• AIMD is an implementation of the dynamic batching scheme

used by Clipper [12] and MArk [46]. As the name suggests,

when inference latency does not exceed the latency objective,

batch size increases additively. If latency objective is violated,

a multiplicative reduction of batch size is performed.
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Mean values of period and relative deadline (ms)

Trace 1 Trace 2 Trace 3

Desktop 50 150 250

Jetson TX2 300 450 600

Table 2: Mean values of frame period and relative deadline when

generating request traces.

• BATCH is the scheme used by Triton Inference Server [1]. It

performs batching over request data with a fixed batch size

determined empirically. We set the batch sizes as small as

possible to reduce the latency of each job.

• BATCH-Delay is another scheme provided by Triton Infer-

ence Server. Apart from imposing a fixed number as the

batch size, BATCH-Delay also imposes a time limit to each

model. This scheme batches input data either when the num-

ber of frames in a batch reaches the configured batch size,

or when the time limit is reached, whichever occurs first.

It is worth mentioning that all of these approaches process multiple

requests concurrently under multitenancy situation. For BATCH

and BATCH-Delay, we set the batch size as small as possible in

order to reduce the latency of each job. However, sometimes a small

batch size could drain GPU memory since there are too many jobs

executed concurrently on GPU. If this happens, we increase the

batch size until the memory problem is alleviated.

Request traces. Each time we run DeepRT or the aforemen-

tioned inference systems, we feed the system with multiple syn-

thesized requests to perform inference on their data. The requests

are independent of each other and they arrive at the system one

at a time. We use tweets traces from Twitter [4] as a reference to

determine the interval between the arrival of requests. Each request

contains a video with a fixed number of frames, and each frame is

released periodically according to its frame rate. In order to demon-

strate the universality of DeepRT on various kinds of applications,

we randomly set the period and relative deadline of the frames in a

video. The period and relative deadline of the frames are sampled

from a Gamma distribution independently. We select Gamma dis-

tribution to generate random period and relative deadline settings

because the generated random numbers by Gamma distribution

start from 0, and it’s a common distribution in queuing theory.

The shape parameter 𝑘 and the scale parameter 𝜃 of the Gamma

distribution are set to 2 and 5, respectively. Then we scale the sam-

ples to appropriate values. For each request, we randomly choose

an input shape and a model from the 6 models listed in Section 2

plus Mobilenet-v2 [37], and we limit the number of categories of

requests.

On both the desktop computer and Jetson TX2, we synthesize 3

traces of requests using the aforementioned approach. Each trace

contains 20 to 30 requests. The periods and relative deadlines of all

requests in the same trace are obtained from scaling the randomly

sampled values with the same factor. The mean values of periods

and relative deadlines of these traces are shown in Table 2.

In each run, we feed an inference system with one trace of re-

quests, wait till all frames are processed, and record frame deadline

misses as an indication of the system’s ability to perform real time

inference. Since DeepRT’s Admission Control Module admits re-

quests selectively while other approaches don’t have admission

control measures, in order to guarantee the fairness of comparison,

we record the accepted requests from DeepRT and feed these re-

quests to other systems. Moreover, we disable DeepRT’s Adaptation

Module which potentially reduces frame shapes.

Results on achieving real time inference.We first show the

deadline miss rates of DeepRT and the other inference systems in

Figure 4. To distinguish the traces on Jetson TX2 from the traces on

desktop computer, we use “Trace x′” to indicate it is for Jetson TX2.

We can see that for all 6 traces DeepRT shows the lowest deadline

miss rates. When the mean values of period and relative deadline are

50𝑚𝑠 , the deadline miss rate of DeepRT is still 5% while it handles

4 concurrent requests and a total number of 10 requests. DeepRT

exhibits the lowest deadline miss rates because its design focuses on

meeting requests’ deadlines and it considers special characteristics

of GPU mentioned in Section 2. The results demonstrate DeepRT’s

ability to perform soft real time inference services for multiple

requests. Note that DeepRT does not completely avoid deadline

misses due to job instance overruns. Interestingly, Clipper shows

the highest deadline miss rates in all runs. We think the reason is

that the AIMD based adaptive batching scheme assumes abundant

resources and is more suitable for cloud-scale inference.

We also analyse the frames that are finished processing after

the deadlines. In soft real time systems, jobs whose deadlines are

missed still provide some value if they can be completed as early

as possible. We examine the distribution of overdue time for each

inference approach and show the results in the form of CDFs in

Figure 5. We can see that DeepRT performs the best in terms of

deadline overdue time due to its utilization of the EDF algorithm.

Peak GPU memory usage. We also measure the peak GPU

memory usage of the 4 approaches under different traces. Peak

GPU memory usage is an important metric since the computa-

tions on GPU are memory demanding. An inference system con-

suming too much GPU memory could drain the memory, leading

to memory allocation errors. On the desktop computer we use

nvidia-smi to measure GPU memory usage, and on Jetson TX2

we use tegrastats. The results are shown in Figure 6.

6.3 Throughput performance of DeepRT

In this part we evaluate the throughput performance of DeepRT.

Since there is no existing real time scheduler for CNN inference

on the edge, we implement a real time scheduler, Sequential EDF

(SEDF), and compare the throughput performance of DeepRT agaist

SEDF. We would like to examine whether DeepRT is able to offer

high inference throughput while meeting latency requirements

compared to SEDF. As its name suggests, SEDF processes input

frames from multiple requests one by one according to the frames’

deadlines. It doesn’t execute multiple models concurrently, nor

does it perform batching. We also implement an EDF imitator as

the admission control policy of SEDF. It is worth mentioning that

we don’t compare DeepRT with the baseline approaches in Section

6.2 since those approaches are not real time schedulers and there-

fore do not provide latency guarantees. Besides, they do not have

admission control modules which reject requests if they can cause

deadline misses. Therefore, we compare DeepRT with a soft real

time scheduler SEDF to guarantee a fair comparison.

We would like to see (1) how many concurrent requests each

inference system can handle and (2) what is the throughput of each

system. We use the same method as Subsection 6.2 to generate
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(a) Desktop computer. (b) Jetson TX2.

Figure 4: Comparison of deadline miss rates between DeepRT and state-of-the-art inference systems on 3 synthesized request traces on the

desktop computer and Jetson TX2.

(a) Trace 1 on desktop computer. (b) Trace 2 on desktop computer. (c) Trace 3 on desktop computer.

(d) Trace 1’ on Jetson TX2. (e) Trace 2’ on Jetson TX2. (f) Trace 3’ on Jetson TX2.

Figure 5: CDF of overdue time under the synthesized request traces of Figure 4 on the desktop computer and Jetson TX2.

(a) Desktop computer. (b) Jetson TX2.

Figure 6: Peak memory usage of DeepRT vs. state-of-the-art ap-

proaches under the request traces of Figure 4.

request traces, except that we increase the frequency of request

arrival to saturate the inference systems. Another difference is that,

we feed the two systems with the same pending requests, but we

let each of them determine which requests to admit. The number

of concurrent requests each approach can handle and the average

throughput each approach achieves are shown in 7.

We observe that on all the traces DeepRT performs better than

or as well as SEDF, due to the fact that the novel batching approach

of DeepRT leverages the batching ability of GPU and exhibits high

throughput while providing latency guarantee. We can see that

on the third traces of both devices, DeepRT largely outperforms

SEDF, while the differences on the first traces are smaller. As the

mean relative deadlines of the requests in the third traces are larger,

more frames can be batched due to our DisBatcher design, boosting

the throughput performance of DeepRT. On the first traces, fewer

frames are batched so DeepRT doesn’t have a high performance

gain compared to SEDF.

6.4 Evaluating the Admission Control Module

In this part we evaluate the performance of the Admission Control

Module. Specifically, we would like to examine (1) whether the

Admission Control Module is able to accurately model the system

to make admission decisions, and (2) what is the running time of

the Admission Control Module.

Accuracy of the EDF imitator. Naturally, we would like the

Admission Control Module to admit as many requests as possible to

increase throughput while not violating any deadline requirements.

That is the reason why we employ an EDF imitator as an exact

analysis tool to determine schedulability. We evaluate how accurate

the EDF imitator is in estimating future job instance executions.

We generate 3 traces of requests with the method in Subsection

6.2. The only difference lies in the mean values of periods and

relative deadlines. For the first trace, we set the mean period to be

100𝑚𝑠 and mean relative deadline to be 300𝑚𝑠 . For the second trace,

we set both values to be 200𝑚𝑠 . And for the third trace we set them
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(a) Number of admitted requests under
3 request traces on desktop computer.

(b) Throughput under 3 request traces
on desktop computer.

(c) Number of admitted requests under
3 request traces on Jetson TX2.

(d) Throughput under 3 request traces
on Jetson TX2.

Figure 7: Throughput comparison between DeepRT and Sequential EDF on desktop computer and Jetson TX2.

Figure 8: CDF of the differences

between predicted latencies by

the EDF imitator and latencies

measured in real executions.

Figure 9: Median running time

of the Admission Control Mod-

ule when the requests contain

different number of frames.

to be 300𝑚𝑠 and 100𝑚𝑠 , respectively. The reason of using these

configurations is that we would like to examine the EDF imitator

under various batch sizes and various deadlines. We only perform

this experiment on the desktop computer as the effectiveness of the

EDF imitator is the same across all platforms as long as the profiled

worst-case job instance execution times are accurate.

We use the difference between the estimated latency of frame

inference from the EDF imitator and the actual frame latency mea-

sured during real executions as the metric of accuracy, as the major

goal of DeepRT is to provide latency guarantee for users. The result

is shown in Figure 8. We can see that the difference is the smallest

on the trace with the smallest deadline, and vice versa. On the first

trace which corresponds to the largest relative deadline (300𝑚𝑠), the

difference can be as large as 250𝑚𝑠 . We find that the large latency

differences happen on latter frames in a request frame sequence.

In fact, when the EDF imitator is performed on some requests, it

considers all frames in the requests and latency estimation errors

accumulate over the frame sequences. But large latency differences

are rare and still smaller than the corresponding relative deadlines

(250𝑚𝑠 < 300𝑚𝑠). Overall the EDF imitator is sufficiently accurate

to predict whether the deadline of a frame will be missed.

Admission Control Module running time. As mentioned in

Section 4, the complexity of the EDF imitator is linear with respect

to the number of frames in all requests. We evaluate the running

time of the Admission Control Module on both devices under differ-

ent number of frames. Specifically, we generate 4 request traces for

both devices using the previous method; the requests in the 4 traces

contain videos with 102, 103, 104, and 105 frames, respectively. The

running times (see Figure 9) are all below 1 second except the case

where Jetson TX2 processes requests with 105 frames, where the

running time is 5.9 seconds. If we consider the normal frame rate

of a video to be 30𝑓 𝑝𝑠 , 105 frames correspond to a video of approx-

imately one hour. In fact, if DeepRT is used to perform inference

on long videos, we can calculate the least common multiple of

their periods and run the EDF imitator over twice that time period,

significantly reducing the running time.

6.5 Adapt to Overruns

We evaluate how quickly DeepRT reacts to job instance overruns

and eliminate deadline misses caused by these overruns. We gener-

ate request traces with periods and relative deadlines to be 200𝑚𝑠
for desktop and 600𝑚𝑠 for Jetson TX2. In each run we manually

inject a short waiting time to 5 consecutive job instances and mea-

sure the number of deadline misses caused by the injected waiting

time. If a certain method reacts to overruns faster, it can reduce the

number of deadline misses. We run this experiment on both the

desktop computer and Jetson TX2. The lengths of the waiting times

are set to be 100𝑚𝑠 , 200𝑚𝑠 , 500𝑚𝑠 , and 1000𝑚𝑠 .
We compare the number of deadline misses between enabling

and disabling the Adaptation Module in Figure 10. We can see

that even without the Adaptation Module, DeepRT is still able to

bring the system back to normalcy after experiencing some deadline

misses. The reason is that DeepRT does not achieve 100% utilization

of the GPU as it is a real time system. There is idle time between job

instance executions which act as buffer absorbing the overruns. The

Adaptation Module enhances the ability to absorb the overruns.

7 RELATEDWORK

Deep Learning Inference on the Edge. There has been a surge

in industrial and research efforts to develop deep learning inference

systems on cloud or on edge. Tensorflow-Serving [33] and Triton

Inference Server [1] are two industrial general-purpose inference

platforms. Clipper [12] is a cloud based throughput and latency

oriented model serving system with a modular design. Mainstream

[24] enables work sharing among different vision applications to

increase throughput. In [16], the authors propose to use deep rein-

forcement learning to adaptively select model and batch size to opti-

mize QoS defined as combination of accuracy and latency. Swayam

[19] is a cloud based machine learning serving system which au-

toscales resources to meet SLA goals. In [48], the authors propose

to partition CNN models across multiple IoT devices to speed up the

inference. Most of the above efforts aim to improve throughput and

latency performance, but either (1) they assume abundant cloud

resources and achieve their performance goals through scaling the

resources, or (2) they improve latency performance but don’t have

soft real time guarantee. DeepQuery [15] co-schedules real time

and non-real time tasks on GPU, but its primary focus is to optimize

the performance for non-real time tasks.

Meanwhile a few works study the performance characteristics

of deep learning inference on the edge. In [20] the authors study

latency and throughput performance of object recognition and

object detection deep learning models. Their study focuses more on

latency-throughput trade-off due to different batch sizes. In [25] the
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(a) On desktop computer. (b) On Jetson TX2.

Figure 10: Comparison of the number of deadline misses caused

by manually injected overruns between enabling and disabling the

Adaptation Module.
authors characterized different AI applications using their specially

built edge accelerators, and evaluate the benefit of model splitting.

AugmentingGPUwithReal TimeFeatures. Some researchers

look deeper into how GPU works and try to add real time features

to GPU based computations. In [42], the authors propose to provide

QoS support for GPU applications through fine-grained manage-

ment of GPU resources such as registers, memory, and computation

cycles. GPUSync [14] is a real time management framework sup-

porting multiple scheduling policies such as rate-monotonic and

EDF using synchronization-based management. In [27], the au-

thors propose to separate CNN input data into different regions of

importance and prioritize critical tasks by optimizing the impor-

tance of regions. There have also been some works providing GPU

with preemption ability by implementing GPU context switches

[40][34][41][43]. All these works differ from our work in that they

provide real time features to GPU processing by manipulating lower

level components such as GPU driver.

Latency-centric IoT Data Processing. Apart from processing

computer vision application requests using GPU, researchers have

proposed various scheduling systems to perform traditional pro-

cessing on video or IoT contents. In [11], the authors propose a CPU

service class for multimedia real time processing, and put forward

some scheduling algorithms to process different service classes on

CPU. Janus [36] provides a cross-layer CPU scheduling architecture

for virtual machine monitors to schedule soft real time multimedia

processing tasks. VideoStorm [47] has an offline profiler which

generates videos’ resource-quality profile, and uses this profile to

jointly optimize processing quality and latency. Miras [44] proposes

a reinforcement learning based scheduling scheme for scientific

workflow data on cloud, minimizing average response time of the

workflow requests.

8 CONCLUSION

We present DeepRT, a soft real time scheduler for performing CNN

inference on the edge. DeepRT consists of 5 modules – a Perfor-

mance Profiler, an Admission Control Module, DisBatcher, an Ex-

ecution Worker, and an Adaptation Module. DeepRT uses time

windows to batch input data, the lengths of which are determined

by the requests’ deadlines, and processes the batched data sequen-

tially. Our evaluation results show that DeepRT is able to provide

guarantee on inference latency while maintaining high inference

throughput.
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