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Abstract—The recent proliferation of human-carried mobile
devices has given rise to mobile crowd sensing (MCS) systems,
where a myriad of data requesters outsource their sensing tasks
to a crowd of workers via a cloud-based platform. In order to in-
centivize participation, requesters typically compensate workers
with specific amount of payments. Clearly, setting an appropriate
task price is critical for a requester to attract enough worker
participation without unnecessary expenses. Therefore, we in-
vestigate the problem of task pricing in MCS systems with multi-
requester price competition, and also dynamically arriving workers.
Task pricing in such scenario is challenging, because of each
requester’s incomplete information about the others, uncertainty
of future information, etc. So as to address these challenges, we
use Markov game to model requesters’ competitive task pricing,
and Markov correlated equilibrium (MCE) as the solution concept.
We propose that the platform uses the social cost-minimizing
MCE to coordinate requesters’ prices, which is self-enforcing, and
optimizes the system-wide objective of social cost. Technically,
we propose a computationally efficient algorithm to compute an
approximately optimal MCE. Furthermore, through extensive
performance evaluation, we show numerically that our algorithm
yields close-to-minimum social cost in very short running time.

I. INTRODUCTION

The recent proliferation of increasingly capable mobile

devices (e.g., smartphones, smartwristbands, smartwatches)

with a wide variety of on-board sensors (e.g., accelerometer,

gyroscope, compass, camera, GPS) has given rise to mobile

crowd sensing (MCS), a novel sensing paradigm which out-

sources the collection of large scale sensory data to a crowd

of participants, namely (crowd) workers. Thus far, applications

of crowd sensing [1, 2] have pervaded almost every aspect of

our everyday life, including smart transportation, environment

monitoring, urban sensing, healthcare, and many others.

In a typical MCS system, multiple data requesters who

want to collect sensory data from the public crowd post their

sensing tasks (e.g., estimating the traffic speeds of certain road

segments, monitoring the noise levels of specific geographic

areas) via a platform, which is typically a cloud-based central
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server. The platform usually collects and may process to a

certain degree workers’ sensory data. Together with the tasks

to be executed, in order to incentivize worker participation,

each requester also posts a price which specifies the amount

of payment a worker will get by carrying out her tasks.

Needless to say, setting an appropriate price is critical

to each requester, as an excessively high price will incur

unnecessary expenses, whereas a price that is too low will

possibly cause a requester to lose the price competition against

others, and eventually fail to attract participants. Therefore, in

this paper, we investigate the problem of task pricing in MCS

systems, where multiple data requesters compete against each

other to attract worker participation. More specifically, we

study realistic dynamic MCS systems, where workers arrive

dynamically in an online manner. We next elaborate upon the

challenges of task pricing in such scenario.

The first challenge comes from the fact that a requester typi-

cally has incomplete information about other requesters. When

a rational requester makes her pricing decision, not only does

she have to consider factors regarding herself, such as how

many sensing tasks she holds, and how time-sensitve her tasks

are, but also will she take into account how other requesters

set their prices, so that she could win the price competition

without setting her price too high. However, in practice, a

requester only knows the factors that affect her own price, but

rarely has enough information about others’. Therefore, under

such incomplete information, selecting a reasonable task price

would be rather challenging for a requester.

Besides, uncertainty of the future also adds to a requester’s

challenges in deciding her task price. Different from a static

MCS system studied in a plethora of existing literature [3–

12] where requesters make one-shot pricing decisions, in a

dynamic MCS system, a requester will have to select prices

that not simply maximize her immediate utility, but more

importantly maximize her long-term utility considering steps

into the future. However, what will happen in the future is

usually rather stochastic. On one hand, it is hard to predict

the exact number of workers arriving in future time instances.

On the other hand, as aforementioned, it is already very

challenging to consider other requesters’ pricing behaviors

at the current time instance, let alone those in the future.

Therefore, unpredictability of the future makes it even more
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challenging for requesters to set appropriate task prices.

Considering the challenge brought by incomplete infor-

mation, we take the role of the platform, which typically

has global information of all the requesters that register on

it, including the numbers of tasks held by them, the time-

sensitiveness of their tasks, and many others. As an entity that

has access to system-wide information, the platform is thus

much more suitable than the requesters themselves to decide

the task prices. Therefore, more accurately put, the objective

of this paper is to investigate how the platform could decide

reasonable task prices for the data requesters in MCS systems

with multi-requester competition and dynamic worker arrival.

In order to fully capture the influence of stochastic future

information on how requesters set their prices, we model the

dynamic task pricing among them as a Markov game [13],

where at any time instance each requester aims to propose the

price that maximizes her long-term cumulative utility. Below,

we would like to shed some light on how we address the

various challenges on formulating and solving the Markov

game among requesters.

To begin with, we meticulously design the states of the

Markov game and requesters’ utility functions so as to capture,

to the greatest extent, requesters’ pricing behaviors in practice.

Besides, choosing a proper solution concept for the formulated

Markov game is also highly critical and non-trivial. In line

with our objective of deciding reasonable prices for requesters,

we adopt Markov correlated equilibrium (MCE) as the targeted

solution. Simply put, an MCE is a probability distribution over

the space of requesters’ possible price choices which satisfies

the self-enforcing property [14]. Such property ensures that if

the platform suggests requesters to set their prices as the ones

sampled from an MCE, only by setting her price as suggested,

could each requester maximize her utility. Finally, although

there might be multiple MCE’s for a Markov game, we are

specifically interested in computing the one that minimizes the

social cost, which is computationally intractable in general.

Such issue on computational complexity is also addressed

by us through carefully splitting the overall Markov game

into several smaller games with much fewer requesters, while

ensuring an approximately minimum social cost.

In summary, we primarily make the following contributions

in this paper.

• We solve the problem of task pricing in dynamic MCS

systems with both multi-requester price competition and

dynamic worker arrival.

• We address the various arising challenges (e.g., incom-

plete information, future uncertainties) by realistically and

meticulously modeling the problem as a Markov game,

and utilizing Markov correlated equilibrium, which is self-

enforcing, to decide requesters’ prices.

• We show that computing the social cost-minimizing MCE

is computationally intractable in general, and we design a

computationally efficient algorithm to compute an MCE that

approximately minimizes the social cost.

II. RELATED WORK

The set of literature most relevant to this paper are the

suite of incentive mechanisms designed to stimulate worker

participation in MCS systems [3–12, 15–30]. Among them,

[3–12] focus on static MCS systems, where workers and

requesters arrive all at once, and there is only a single data

requester (usually represented by the central platform). Specif-

ically, these works investigate contest design [3], quality-aware

mechanisms [4–8], cooperation among service providers [16],

distributed task selection [17], network effect [11], as well as

many other issues related to incentivizing worker participation.

Although MCS systems with dynamic worker arrivals have

been studied in [21–28], these works consider the scenario

with only one data requester, as well. Furthermore, [16–19]

study incentive mechanism design in multi-requester, but static

MCS systems.

Different from most of the existing work, this paper tackles

the problem of task pricing in dynamic MCS systems with both

multi-requester price competition and dynamic worker arrivals.

Note that similar problem settings have been considered in

[15, 20, 29]. However, in contrast to this paper, [15] applies

specifically in proximity-based MCS systems, where workers

have to be physically in the close vicinity of requesters to

execute their tasks, and task prices in [20, 29] are decided

without considering requesters’ long-term cumulative utilities.

III. PRELIMINARIES

A. System Overview

The MCS system studied in this paper consists of a cloud-

based platform, a set of K requesters, denoted as R =
{r1, · · · , rK}, and a crowd of participating workers. Each

requester ri holds Ni sensing tasks, which in practice could

potentially belong to different types that require different

knowledge, expertise, or even sensing devices from workers.

For example, road sensing (e.g., traffic speed estimation,

pothole detection) could only be executed by drivers that carry

mobile devices in their vehicles, and air quality monitoring by

pedestrians with specific kinds of air quality sensors.

Based on such observation, we assume that requesters hold

a total number of W types (i.e., type 1, 2, · · · , W ) of tasks,

and a type-w task can only be executed by a type-w worker.

Furthermore, we use Ni,w to denote the number of type-w

tasks held by requester ri, Rw the set of requesters that hold

type-w tasks, Ni the vector containing all Ni,w’s such that

ri ∈ Rw. Obviously,
∑

w:ri∈Rw
Ni,w = Ni and ∪W

w=1Rw =
R, and we let N =

∑
i:ri∈R Ni denote the total number of

tasks held by requesters in an MCS system.

In this paper, we consider both static MCS systems where

workers arrive all at once, and dynamic MCS systems where

workers arrive dynamically in an online manner. The primary

goal of this paper is to study how the platform, as an entity who

has access to system-wide information, could set reasonable

prices for requesters in dynamic MCS systems. However, as

models, solutions, and analyses for static MCS systems serve

as preliminaries for and shed lights upon their counterparts in

dynamic MCS systems, they are also discussed in this paper.

1064

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:03:30 UTC from IEEE Xplore.  Restrictions apply. 



B. Static MCS System

1) System Model: In our model of a static MCS system,

there are overall M workers arriving at the system all at once,

out of which the number of each type-w workers is Mw. Each

requester ri posts a price pi, which is the amount of payment

that a worker gets for executing one of the requester’s tasks.

We adopt the following discrete choice model given in [31]

to characterize workers’ task selection behaviors.

Definition 1 (Task Selection Probability). Given pw, which

denotes the vector of prices proposed by requesters in the set

Rw, the probability that a type-w worker chooses a task from

requester ri ∈ Rw is defined as

θi,w(pw) =
exp(ai,wpi − bi,w)∑

j:rj∈Rw
exp(aj,wpj − bj,w)

, (1)

where ai,w and bi,w for each ri ∈ Rw are positive parameters.

As indicated by [31] that parameters ai,w’s and bi,w’s could

be estimated using statistics of workers’ historical choices,

we thus assume them to be known by the platform. Such

discrete choice model perfectly captures workers’ task selec-

tion behavior in various aspects. On one hand, the probability

θi,w(pw) monotonically increases with pi, which conforms to

the intuition that the higher the price a requester proposes,

the more likely that her tasks will be chosen by workers. On

the other hand, Equation (1) incorporates the randomness in

workers’ task selection caused by factors (e.g., age, gender)

other than prices which could also affect their choices.

In this paper, we consider that requesters hold delay-

sensitive tasks (e.g., traffic speed estimation, air quality mon-

itoring), and thus a penalty will be incurred to a requester if

any of her tasks is not chosen by participating workers. We

let αi ≥ 0 be the penalty to requester ri for one unallocated

task. Next, we define a requester’s cost in Definition 2.

Definition 2 (Requester’s Cost in Static MCS System). Given

p, the vector of prices proposed by all requesters, requester

ri’s overall expected cost can be defined as

Ci(p) =
∑

m∈Mi

φ(m,p)

( ∑
w:ri∈Rw

min{mw, Ni,w}pi

+ αi

(
Ni,w −

∑
w:i∈Gw

min{mw, Ni,w}

))

where Mi =
∏

w:ri∈Rw
{0, 1, · · · ,Mw} is the space com-

prised by the product of each set {0, 1, · · · ,Mw} such that

ri ∈ Rw, and φ(m,p) =
∏

w:ri∈Rw

(
Mw

mw

)(
θi,w(pw)

)mw
(
1−

θi,w(pw)
)Mw−mw

denotes the probability that task selection

profile m ∈ Mi happens under price vector p.

By Definition 2, a requester’s cost consists of the payments

to workers who execute her tasks, as well as the penalty

incurred by the unallocated tasks.

2) Game Theoretic Model: As given in Definition 2, the

cost of a requester depends on all requesters’ prices, and thus,

her pricing decision will inevitably be affected by others’.

Therefore, we use a static (one-shot) non-cooperative game

with requesters as the players and their prices as the actions to

characterize requesters’ pricing behaviors. In this game, each

requester ri aims to choose a price pi that minimizes her own

cost Ci(pi,p−i), while considering other requesters’ prices

p−i = (p1, · · · , pi−1, pi+1, · · · , pK). We refer to such game

as static pricing (SP) game in the rest of this paper.

An individual requester ri usually knows her own parame-

ters Ni and αi, but rarely those of the others. It is thus hard

for her to decide her price due to such incomplete information.

However, the platform typically has global information about

all requesters’ parameters, as it can require them to provide

such information at the time of registration. Thus, we take the

role of the platform, and study how the platform could set

reasonable prices for the requesters. To achieve this end, we

adopt correlated equilibrium (CE) defined in Definition 3.

Definition 3 (Correlated Equilibrium). Let P be the set of

prices that requesters could propose, which is assumed to be

discrete and finite with size P , and π(·) be a probability distri-

bution over space PK . Then, π(·) is a correlated equilibrium

(CE) of the SP game, iff for each ri ∈ R and price pi, p
′
i ∈ P ,∑

p−i∈PK−1

π(pi,p−i)
(
Ci(pi,p−i)− Ci(p

′
i,p−i)

)
≤ 0. (2)

By Definition 3, a CE π(·) is a probability distribution over

the space of requesters’ price combinations. It satisfies that if

the platform samples a price vector p = (pi,p−i) from π(·),
and suggests requesters to set their prices according to p, only

by setting her price as pi could each requester ri minimizes her

cost given that other requesters take p−i as their prices. Due

to such self-enforcing property, we propose to set requesters’

prices using the price vector sampled from a CE. Apparently,

there could be multiple CE’s that satisfy the polytope defined

by Inequality (2). Considering the system-wide performance,

we are specifically interested in the CE that minimizes the

expected social cost.

Definition 4 (Social Cost). Given a CE π(·), an SP game’s

expected social cost is
∑

p∈PK π(p)
(∑

i:ri∈R Ci(p)
)
.

To summarize, in MCS systems, we aim to compute the CE

of the SP game which minimizes the expected social cost.

C. Dynamic MCS Systems

1) System Overview: As shown in Figure 1, in a dynamic

MCS system, we discretize the time line into multiple time

slots, denoted as t = 0, 1, · · · , T , and workers arrive dy-

namically in an online manner (workers’ Step 2 , 4 , 6 ). In

order to simplify presentation1, we assume that worker arrival

follows a Bernoulli process with parameter λ. That is, in each

time slot, with probability λ there is one worker arrival, and

with probability 1 − λ there is no worker arrival. We also

assume that a worker belongs to type w with probability μw.

1Our models and solutions can be generalized to cases with more compli-
cated worker arrival processes, which however introduce unnecessary compli-
cations in presentation. Thus, we only consider Bernoulli arrival process.
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Fig. 1: Framework of a dynamic MCS system (where circled numbers
represent the order of the events).

Instead of a one-shot price, each requester proposes a price

in each time slot (requesters’ Step 2 , 4 , 6 ). Her task is then

selected according to the same probabilistic model as given

in Definition 1. Requesters also hold delay-sensitive tasks in

dynamic MCS systems, and any unallocated task at time slot

T will incur a penalty αi to requester ri.

2) Game Theoretic Model: In such dynamic setting, we use

the following Markov game, which we refer to as dynamic

pricing (DP) game and define in Definition 5, to characterize

requesters’ pricing behaviors.

Definition 5 (Dynamic Pricing Game). A dynamic pricing

(DP) game is a Markov game with the following components.

• Player: A DP game has the set of requesters R as players.

• State: A DP game has a series of states (n1,n2, · · · ,nK , t),
where t denotes the current time slot, and ni denotes the

vector containing the number of each type of requester ri’s

unallocated tasks at time t. We let n = (n1,n2, · · · ,nK),
and N = (N1,N2, · · · ,NK). Thus, a DP game starts at

state (N, 1), and terminates at any state such that t = T

which is referred to as a terminal state.

• Action: At any state, each requester ri’s action is the task

price pi that she proposes.

• State transition: In a DP game, requesters’ joint action

profile p and workers’ task selection jointly affect state

transition. We let Iw denote the set of requesters that have

type-w unallocated tasks at state (n, t). At any state such

that t ∈ {0, 1, · · · , T −1}, state transition follows the prob-

abilistic model such that for each (i, w) with ri ∈ Rw∩Iw,

Pr
[
(ni,w − 1,n−(i,w), t+ 1)

∣∣(n, t),p] = λμwθi,w(pw),

and otherwise we have

Pr
[
(n, t+ 1)

∣∣(n, t),p] = 1−

W∑
w=1

∑
i:ri∈Rw∩Iw

λμwθi,w(pw),

where n−(i,w) denotes the vector obtained by excluding the

element ni,w from n.

• Immediate cost: At every state, after requesters propose

their prices p, each requester ri will experience an imme-

diate cost such that for each t ∈ {0, 1, · · · , T − 2},

ci
(
(n′, t+ 1), (n, t), pi

)
=

∑
w:ri∈Rw

(ni,w − n′
i,w)pi,

and for t = T − 1,

ci
(
(n′, T ), (n, T − 1), pi

)
=

∑
w:ri∈Rw

(
(ni,w − n′

i,w)pi + n′
i,wαi

)
.

As given in Definition 5, the state of a DP game captures

the various aspects that affect requesters’ pricing decisions,

including the number of remaining tasks n, and the current

time slot index t. Intuitively, a requester may want to increase

her price, if she still has a large number of unallocated tasks

near the end of the time line. Under our assumption that

requesters are fully rational, at any state, a requester will

propose the price that minimizes her cumulative expected cost

from the time slot onwards. As in an SP game, we also propose

to use CE to coordinate requesters’ prices. However, the CE

adopted in our DP game is the Markov correlated equilibrium

(MCE) defined in Definition 6.

Definition 6 (Markov Correlated Equilibrium). Let π(·|·) be

a conditional probability distribution over space PK condi-

tioned on the state of a DP game. Then, π(·|·) is a Markov

correlated equilibrium (MCE), iff at each non-terminal state

(n, t), and for each ri ∈ R, and price pi, p′i ∈ P ,∑
p−i∈PK−1

π
(
pi,p−i|(n, t)

)(
Ci

(
(n, t), pi,p−i

)
−

Ci

(
(n, t), p′i,p−i

))
≤ 0,

(3)

where Ci

(
(n, t),p

)
denotes requester ri’s cumulative cost

from state (n, t) to the terminal states (i.e., states with t = T ).

For t ∈ {0, 1, · · · , T − 2}, we define Ci

(
(n, t),p

)
as

Ci

(
(n, t),p

)
=
∑
n′

Pr
[
(n′, t+ 1)

∣∣(n, t),p](ci
(
(n′, t+ 1), (n, t), pi

)

+
∑

p′∈PK

π
(
p
′|(n′, t+ 1)

)
Ci

(
(n′, t+ 1),p′

))
,

and for t = T − 1, we have that

Ci

(
(n, T − 1),p

)
=
∑
n′

Pr
[
(n′, T )

∣∣(n, T − 1),p
]
ci
(
(n′, T ), (n, T − 1), pi

)
.

Similar to the static case, at each state of a DP game, the

platform samples a price vector p from the MCE π(·|·), and

suggests requesters to set their prices according to p. We

have inherently assumed in Definition 6 that, at each state,

requesters will take the platform’s pricing suggestions due to

the CE condition. Again, similar to the SP game, the platform

is interested in calculating the MCE that minimizes the social

cost, which is defined in Definition 7, at every state.

Definition 7 (Social Cost in DP Game). Given an MCE π(·|·)
of a DP game, at any state (n, t), the expected social cost is

represented as
∑

p∈PK π
(
p|(n, t)

)(∑
i:ri∈R Ci

(
(n, t),p

))
.

To summarize, in dynamic MCS systems, our goal is to

calculate the MCE of the DP game which minimizes the

expected social cost at every state.
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IV. TASK PRICING IN STATIC MCS SYSTEMS

In this section, we present our formal mathematical for-

mulation for computing the social cost-minimizing CE in SP

games, as well as our solution methods and the corresponding

analyses.

A. Problem Formulation

As discussed in Section III-B, we model requesters’ task

pricing in a static MCS system as an SP game. Next, we

formulate the problem of calculating the CE that minimizes

the social cost, which we refer to as the SP-CE problem, as

the following linear optimization program.

SP-CE Problem:

min
∑

p∈PK

π(p)

( ∑
i:ri∈R

Ci(p)

)
(4)

s.t.
∑

p−i∈PK−1

π(pi,p−i)
(
Ci(pi,p−i)

− Ci(p
′
i,p−i)

)
≤ 0, ∀ri ∈ R, pi, p

′
i ∈ P, (5)∑

p∈PK

π(p) = 1, (6)

π(p) ≥ 0, ∀p ∈ PK
. (7)

The SP-CE problem has continuous non-negative variables

π(p) for each p ∈ PK , and all the other parameters of an

SP game that are involved in this formulation are a priori

known by the platform, and thus are treated as constants.

As indicated by Objective Function (4), the goal of this

optimization program is to minimize the expected social cost

defined in Definition 4. In terms of the constraints, Constraint

(5) is exactly the CE condition given in Definition 3, and

Constraint (6) and (7) ensure that any feasible solution π(·)
to the SP-CE problem is a probability distribution.

Obviously, SP-CE is a linear programming problem, which

can be solved in time that is polynomial in the problem’s input

size using existing methods [32], including the interior-point,

simplex, and ellipsoid algorithm2, which we will collectively

refer to as ISE algorithms in the rest of the paper. As we

will show in the following Lemma 1, directly solving the SP-

CE problem with current methods will incur excessively high

computational complexity.

Lemma 1. ISE algorithms have exponential computational

complexity in the number of requesters K for the SP-CE

problem.

Proof. As aforementioned, the SP-CE problem has π(p) for

each p ∈ PK as variables. Thus, the number of variables of

the problem is PK . Furthermore, Inequality (5) corresponds to

KP 2 constraints, and Inequality (7) is defined on each variable

π(p), and thus corresponds to PK constraints. Therefore, the

SP-CE problem has overall O(PK) constraints.

2Although there exist other solution methods for linear programming, we
will treat the interior-point, simplex, and ellipsoid algorithm as state-of-the-art
approaches, because they already have good enough performance.

As indicated in [32], ISE algorithms have polynomial com-

putational complexity with respect to the number of variables

and constraints of a linear program. However, in the SP-CE

problem, as we have discussed in the previous paragraph, the

number of variables and constraints are both in the order

of O(PK), which grow exponentially with the number of

requesters. Therefore, existing solution methods have expo-

nential computational complexity for the SP-CE problem in

terms of the number of requesters K.

In practice, there are typically a large number of requesters

in an MCS system, and thus existing linear programming

solution methods, which have exponential computational com-

plexity in the number of requesters are not suitable for the

SP-CE problem. Next, in Section IV-B, we propose our own

method for solving the SP-CE problem in a computationally

efficient manner.

B. Computationally Efficient Solution Method

Our intuition of removing the exponential relationship

between the computational complexity and the number of

requesters is to divide the SP game into several smaller games,

each of which has much fewer requesters. Specifically, we

break the SP game into W sub-static pricing (SSP) games3,

out of which SSP game w for each w ∈ {1, 2, · · · ,W} has the

set of requesters Rw as the players, and each requester ri in

the game has Ni,w tasks to be executed. Thus, based on such

definition, requester ri belongs to every SSP game w such that

ri ∈ Rw, and in each SSP game that the requester belongs to,

she proposes a separate price to compete with other requesters

in the same SSP game.

In each SSP game w that requester ri participates in, she

has a cost

Ci,w(pw) =

Mw∑
mw=0

ψ(mw,pw)
(
min{mw, Ni,w}pi,w + αi

(
Ni,w

−min{mw, Ni,w}
))
,

where we use ψ(mw,pw) =
(
Mw

mw

)(
θi,w(pw)

)mw
(
1 −

θi,w(pw)
)Mw−mw

to denote the probability that mw out of

the Mw type-w workers choose requester ri’s tasks.

Then, in each SSP game w, the social cost minimization

problem, referred to as the SSP-CE(w) problem, is defined as

the following linear program, where Kw = |Rw| and p−(i,w)

denotes the price vector obtained by removing the element

pi,w from pw.
SSP-CE(w) Problem:

min
∑

pw∈PKw

πw(pw)

( ∑
i:ri∈Rw

Ci,w(pw)

)
(8)

s.t.
∑

p−(i,w)∈PKw−1

πw
(
pi,w,p−(i,w)

)(
Ci,w

(
pi,w,p−(i,w)

)
−

Ci,w

(
p
′
i,w,p−(i,w)

))
≤ 0, ∀ri ∈ Rw, pi,w, p

′
i,w ∈ P, (9)

3Note that the concept of sub-static pricing game is not exactly the same
with that of a subgame defined in traditional game theory literatures [14].
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∑
pw∈PKw

πw(pw) = 1, (10)

πw(pw) ≥ 0, ∀pw ∈ PKw . (11)

The SSP-CE(w) problem is the exact counterpart of the

SP-CE problem with a smaller number of requesters. Thus,

we will skip the detailed explanation of this linear optimiza-

tion program, but point out that the objective of the SSP-

CE(w) problem is to solve the CE πw(·) of SSP game w

that minimizes the game’s social cost. Next, we introduce

in Algorithm 1 our computationally efficient CE calculation

(CE2C) algorithm.

Algorithm 1 takes as inputs all constants that are needed

to represent each SSP-CE(w) problem, and solves each

problem using any of the ISE algorithms (line 2). Finally,

the algorithm returns the CE πw(·) for each SSP game

w (line 3). Although the CE returned by the CE2C algo-

rithm
(
π1(·), π2(·), · · · , πW (·)

)
will be different from the one

obtained by solving the SP-CE problem directly with ISE

algorithms, we will demonstrate numerically in Section VI

that the two CE’s yield approximately the same social cost in

practice. Next, in Theorem 1, we analyze the computational

complexity of the CE2C algorithm given in Algorithm 1.

Algorithm 1: CE2C Algorithm

Input: Instances of each SSP-CE(w) problem for each SSP
game w ∈ {1, 2, · · · ,W};

Output:
(
π1(·), π2(·), · · · , πW (·)

)
;

1 foreach w = 1, 2, · · · ,W do
2 solve the SSP-CE(w) problem for SSP game w using

any of the ISE algorithms to obtain πw(·);

3 return
(
π1(·), π2(·), · · · , πW (·)

)
;

Theorem 1. On the CE2C algorithm’s computational com-

plexity, we have the following two results:

• The CE2C algorithm has a polynomial computational com-

plexity in the number of requesters K and the number of

price choices P , under the assumption that the number

of SSP games W is polynomial in K, and the maximum

number of requesters in each SSP game, denoted as K∗ =
maxw∈{1,2,··· ,W} Kw is much less than K.

• The CE2C algorithm’s computational complexity does not

depend on Mw’s, Ni,w’s, Ni’s, M , as well as N .

Proof. In each SSP-CE(w) problem, there are PKw variables,

and O(PKw) constraints. Thus, the computational complexity

of using any ISE algorithm to solve an SSP-CE(w) problem

is polynomial in P . Due to our assumption that the maximum

number of requesters in each SSP game, denoted as K∗ is

much less than K, and by our analysis given in the proof of

Lemma 1, any ISE algorithm could be treated as having a

constant computational complexity with respect to K.

Furthermore, as the main loop of Algorithm 1 is executed

for each w ∈ {1, 2, · · · ,W}, and W is assumed to be

polynomial in K, the overall computational complexity of the

CE2C algorithm is polynomial in the number of requesters

K and the number of price choices P . Furthermore, it is

fairly obvious that the number of iterations, and the size of

the optimization problem to be solved in each iteration do not

depend on the number of tasks and workers, and thus related

parameters including the Mw’s, Ni,w’s, Ni’s, M , and N do

not affect the algorithm’s computational complexity.

In many real-world scenarios, there are only a small number

of requesters, usually no greater than 3, in each set Rw. For

example, in most countries, there are usually no more than

3 dominating map services (e.g., Google, Baidu, and Gaode

maps), and thus the number of requesters interested in real-

time traffic congestion information is typically less than 3.

This justifies our assumption in Theorem 1 that K∗ � K.

Furthermore, although the computational complexity of the

CE2C algorithm is exponential in K∗, it can still be regarded

as computationally efficient, because K∗ could typically be

treated as a small constant integer less than or equal to 3.

V. TASK PRICING IN DYNAMIC MCS SYSTEMS

In this section, we present our formulation for computing

the social cost-minimizing MCE, as well as our computation-

ally efficient solution method.

A. Problem Formulation

As discussed in Section III-C, we model requesters’ task

pricing in a dynamic MCS system as a DP game. To further

simplify our presentation, we use s = (n, t) to denote a state

of a DP game. Next, we formulate the problem of calculating

the MCE that minimizes the social cost at state s, which we

refer to as the DP-MCE(s) problem, as the following linear

optimization program.

DP-MCE(s) Problem:

min
∑

p∈PK

π(p|s)

( ∑
i:ri∈R

Ci

(
s,p

))
(12)

s.t.
∑

p−i∈PK−1

π
(
pi,p−i|s

)(
Ci

(
s, pi,p−i

)

− Ci

(
s, p′i,p−i

))
≤ 0, ∀ri ∈ R, pi, p′i ∈ P, (13)∑

p∈PK

π(p|s) = 1, (14)

π(p|s) ≥ 0, ∀p ∈ PK . (15)

Similar to the SP-CE problem, the DP-MCE(s) problem

has π(p|s) for each p ∈ PK as variables, and all the other

parameters of a DP game used in this formulation are assumed

to be known constants. The goal of this optimization program,

as indicated by Objective Function (12), is to minimize the

cumulative social cost from time slot t onwards, and Constraint

(13), (14), and (15) ensure that any feasible solution to the

DP-MCE(s) problem is an MCE at state s.

Next, in Lemma 2, we show that the social cost-minimizing

MCE of a DP game is computationally intractable to calculate.

Lemma 2. The computational complexity of calculating the

social cost-minimizing MCE of a DP game is exponential in

the number of requesters K.
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Proof. It is obvious that the above linear programming prob-

lem DP-MCE(s) for each state s has O(PK) variables and

constraints, respectively. Therefore, computing a DP-MCE(s)
problem using any of the ISE algorithms will take an expo-

nential time in terms of the number of requesters K.

Furthermore, computing the social cost-minimizing MCE

of a DP game will inevitably involve solving the DP-MCE(s)
problem at each state s of the DP game. However, based on

our definition, a DP game has Ω(2K) states, and calculating

the MCE that minimizes the social cost thus has an exponen-

tial computational complexity with respect to the number of

requesters K.

B. Computationally Efficient Solution Method

Because of Lemma 2, we design a computationally efficient

method for solving the social cost-minimizing MCE. Enlight-

ened by the method to reduce the computational complexity

of deriving the social cost-minimizing CE of an SP game, we

also take the approach of splitting the overall game into several

smaller games with fewer numbers of requesters. Specifically,

we break a DP game into W sub-dynamic pricing (SDP)

games4. The set of players for each SDP game w is Rw,

and each requester ri in SDP game w holds Ni,w tasks to

be executed at time slot t = 0. Based on such definition,

the overall worker arrival process could be separated into W

independent processes, such that each SDP game w has a

Bernoulli worker arrival process with parameter λμw.

In an SDP game w, a state is defined as (nw, t), where

nw denotes the vector containing the number of unallocated

tasks that belong to all requesters in SDP game w at time

slot t. Furthermore, an SDP game w has the following

probabilistic state transition model such that at any state with

t ∈ {0, 1, · · · , T −1}, and for each (i, w) with ri ∈ Rw ∩Iw,

Pr
[
(ni,w − 1,n−(i,w), t+ 1)

∣∣(nw, t),pw

]
= λμwθi,w(pw),

and otherwise we have

Pr
[
(nw, t+ 1)

∣∣(nw, t),pw

]
= 1−

∑
i:ri∈Rw∩Iw

λμwθi,w(pw),

where we abuse the notation a little, and use n−(i,w) to denote

the vector obtained by excluding the element ni,w from nw. At

every state of an SDP game w, for each t ∈ {0, 1, · · · , T −2},

each requester ri will experience an immediate cost such that

ci,w
(
(n′

w, t+ 1), (nw, t), pi,w
)
= (ni,w − n′

i,w)pi,w,

and for t = T − 1,

ci
(
(n′

w, T ), (nw, T − 1), pi,w
)
= (ni,w − n′

i,w)pi,w + n′
i,wαi.

Our definitions of each SDP game w’s MCE, denoted as

πw(·|·), and a requester ri’s cumulative cost from any state

(nw, t) onwards, denoted as Ci,w

(
(nw, t),pw

)
, are the same

as Definition 6 except that we substitute the state transition

probability and the immediate cost function as those of SDP

4Again, the concept of sub-dynamic pricing game is also different from the
traditional definition of a subgame [14].

game w. Thus, we omit the detailed definitions of them,

and directly provide our formal mathematical formulation of

calculating the social cost-minimizing MCE of SDP game w

at each state sw = (nw, t) as the following linear optimization

program, which we refer to as the SDP-MCE(sw) problem.
SDP-MCE(sw) Problem:

min
∑

pw∈PKw

πw(pw|sw)

( ∑
i:ri∈R

Ci,w

(
sw,pw

))
(16)

s.t.
∑

p
−(i,w)∈PKw−1

πw

(
pi,w,p−(i,w)|sw

)(
Ci,w

(
sw, pi,w,p−(i,w)

)

− Ci,w

(
sw, p′i,w,p−(i,w)

))
≤ 0, ∀ri ∈ Rw, pi,w, p′i,w ∈ P, (17)∑

pw∈PKw

πw(pw|sw) = 1, (18)

πw(pw|sw) ≥ 0, ∀pw ∈ PKw . (19)

We skip again the detailed explanation of the SDP-MCE(sw)
problem, because it is a variant of the DP-MCE(s) problem

defined specifically over SDP game w. Based on our definition

of requester ri’s cumulative cost function Ci,w

(
(nw, t),pw

)
in SDP game w, the MCE π

(
· |(nw, t)

)
can be calculated

by incorporating the MCE of related states at time slot t+ 1.

Therefore, we adopt the technique of dynamic programming,

and compute the MCE’s backward from t = T − 1. Next,

we present in the following Algorithm 2 our computationally

efficient MCE calculation (MCE2C) algorithm.

Algorithm 2: MCE2C Algorithm

Input: Instances of each SDP-MCE(sw) problem for each
state sw with t = T − 1 of each SDP game
w ∈ {1, 2, · · · ,W};

Output:
(
π1(·|·), π2(·|·), · · · , πW (·|·)

)
;

1 foreach w = 1, 2, · · · ,W do
2 foreach t = T − 1, T − 2, · · · , 0 do
3 foreach state sw at time slot t do
4 solve the SDP-MCE(sw) problem using any of

the ISE algorithms to obtain πw(·|sw);
// store the constants for

SDP-MCE(sw) at time slot t− 1

5 store Ci,w(sw,pw) for each ri ∈ Rw;
// store the outputs

6 store πw(·|sw);

7 return
(
π1(·|·), π2(·|·), · · · , πW (·|·)

)
;

The MCE2C Algorithm given in Algorithm 2 takes as inputs

the instances of each SDP-MCE(sw) problem for each state

sw with t = T − 1 of each SDP game w ∈ {1, 2, · · · ,W}.

In each iteration, it solves each SDP-MCE(sw) problem using

any of the ISE algorithms (line 4), and it then stores the value

Ci,w(sw,pw) for each ri ∈ Rw (line 5) and πw(·|sw) (line

6) for the computation in the next iteration. Note that the

computation starts from states with t = T − 1, because at

the very beginning only instances for those states are a priori

known. As the iterations proceed, the problem instances for

other states become available, and the corresponding SDP-

MCE(sw) problems will then be computed accordingly.

As shown in Algorithm 2, our approach of splitting a DP

game into several SDP games could significantly reduce the
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number of states in each game, as well as the size of the

optimization problem corresponding to each state, which is

why our method is fairly computationally efficient. Next, in

Theorem 2, we analyze the MCE2C Algorithm’s computa-

tional complexity. We let N∗ = maxi:ri∈R Ni denote the

maximum number of tasks held by requesters.

Theorem 2. If the number of SDP games W is polynomial

in K, and the maximum number of requesters in each SDP

game K∗ is much less than K, the MCE2C algorithm has

polynomial computational complexity in K, T , P , and N∗.

Proof. In each iteration of Algorithm 2, the computational

complexity is dominated by solving the SDP-MCE(sw) prob-

lem, which has O(PKw) variables and constraints. Due to the

assumption that K∗ is much less than K, we can treat the

computational complexity of computing the SDP-MCE(sw)
problem with any of the ISE algorithms in each iteration as

polynomial in P and constant with respect to K.

Furthermore, due to the three levels of loops in Algorithm

2, the total number of iterations is O
(
WT (N∗)K

∗
)
. Together

with our assumption that the number of task and worker types

W is polynomial in the number of requesters K, we can arrive

at the conclusion that the MCE2C algorithm has polynomial

computational complexity in K, T , P , and N∗.

By Theorem 2, the MCE2C algorithm has a polynomial

computational complexity in almost all of the primary param-

eters of an SDP game, including K, T , P , and N∗, except

that it has an exponential computational complexity in K∗. As

discussed in Section IV-B, K∗ is usually practically a small

constant, and thus the MCE2C algorithm could be regarded as

computationally efficient in practice. Next, in Section VI, we

will numerically evaluate the expected cumulative social cost

guaranteed by the MCE’s returned by the MCE2C algorithm.

VI. PERFORMANCE EVALUATION

In this section, we introduce the baseline methods, as well

as the settings and results of our numerical evaluation.

A. Baseline Methods

In the case of static MCS systems, we compare CE2C with

using an ISE algorithm to solve the SP-CE problem. In our

implementation, we use the interior-point algorithm [32], as it

has the lowest theoretical computational complexity among the

three ISE algorithms. Furthermore, we also consider another

baseline method, which returns not the social cost-minimizing

CE, but simply any CE of each SSP-CE(w) problem. We refer

to such baseline method as the ACE method. Similarly, in

the case of dynamic MCS systems, we compare our MCE2C

algorithm with using the interior-point algorithm to solve the

DP-MCE(s) problem at each state s, and the AMCE method

that returns not necessarily the MCE that minimizes the social

cost, but any MCE of each SDP-MCE(sw) problem.

B. Evaluation Settings

Our evaluation settings are given in Table I and II, where

the set of requesters’ price choices is set as P = {1, 20, 40},

and Kw is chosen uniformly at random from the set {1, 2, 3}.

In Table I, we present our parameter settings for static MCS

systems. We skip the descriptions of the self-explanatory

parts, and primarily explain the following points. Setting I

has relatively small problem sizes, whereas Setting II-V have

larger problem instances. In Setting I and II, we fix the other

parameters and vary the number of requesters, and in Setting

III and IV, we vary respectively the number of workers M

and the number of SSP games W . Different from Setting I-IV

where each requester ri’s penalty αi is sampled uniformly at

random from [40, 60], in Setting V, we let all requesters have

the same penalty α, and vary α from 50 to 110. Similarly, in

Table II, we present our parameter settings for dynamic MCS

systems, the descriptions of which are omitted, as they are

direct counterparts of the settings in Table I. Moreover, the

optimizations are computed with the GUROBI solver [33].
Setting K P αi W Ni,w M Kw

I [7, 10] {1, 20, 40} [40, 60] 3 [1, 5] 18 [1, 3]

II [300, 1200]{1, 20, 40} [40, 60] �K
2 � [10, 15] 15W [1, 3]

III 600 {1, 20, 40} [40, 60] �K
2 � [10, 15][1000, 1600][1, 3]

IV 600 {1, 20, 40} [40, 60] [100, 250][10, 15] 15W [1, 3]

V 600 {1, 20, 40}[50, 110] �K
2 � [10, 15] 15W [1, 3]

TABLE I: Parameter Setting I-V

Setting K P T λ αi W Ni,w Kw

VI [2, 5] {1, 20, 40} 20 0.8 [40, 60] 3 [1, 3] [1, 3]

VII [30, 120] {1, 20, 40} 2K 0.8 [40, 60] �K
2 � [10, 15] [1, 3]

VIII 40 {1, 20, 40} [60, 120] 0.8 [40, 60] �K
2 � [10, 15] [1, 3]

IX 100 {1, 20, 40} 200 [0.4, 1.0] [40, 60] �K
2 � [10, 15] [1, 3]

X 100 {1, 20, 40} 200 0.8 [50, 80] �K
2 � [10, 15] [1, 3]

TABLE II: Parameter Setting VI-X

C. Evaluation Results

Our results are shown in Table III-IV, and Figure 2-7. In

Table IV, the time unit is second, and the social costs in Figure

2-5 and Figure 6-7 should be obtained by scaling up the values

in the figures by 1000 and 10000 times, respectively.

K ISE CE2C ACE

7 1303.2 1303.2 1601.0

8 1536.2 1536.2 1845.4

9 1785.6 1785.6 2095.2

10 2032.2 2032.2 2344.1

TABLE III: Social cost (I)

K ISE CE2C ACE

7 24.697 0.0957 0.0938

8 218.12 0.0851 0.0727

9 2048.2 0.1227 0.0886

10 24282 0.2836 0.2774

TABLE IV: Running time (I)

Table III and IV, as well as Figure 2-5 show our evaluation

results for Setting I-V given in Table I. Specifically, the two

tables correspond to Setting I’s results, where ISE refers to

using an ISE algorithm to solve the SP-CE problem. On one

hand, from Table III, we could conclude that CE2C and ISE

have exactly the same social cost, which is much less than that

yielded by ACE. On the other hand, from Table IV, we can

observe that the running time of CE2C is much less than that of

ISE, and approximately the same with that of ACE. Thus, these

two tables indicate that our CE2C algorithm guarantees low

social cost with low computational complexity. In Figure 2-5,
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we consider Setting II-IV that have larger problem instances.

For these instances, ISE is no longer able to terminate within

reasonable time, because, even when K = 10, it already takes

24282s to finish. We observe in the experiments that CE2C

still terminates fairly fast, and, as shown in these 4 figures, it

has much less social cost compared with ACE.
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Fig. 2: Social cost (II)
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100 115 130 145 160 175 190 205 220 235 250

W

3.6

3.9

4.2

4.6

4.9

5.2

5.5

5.8

6.2

6.5

6.8

S
o

c
ia

l 
C

o
s
t

ACE

CE2C

Fig. 4: Social cost (IV)

50 56 62 68 74 80 86 92 98 104 110

α

3.6

4.4

5.1

5.8

6.6

7.3

8.1

8.8

9.6

10.3

11.0

S
o

c
ia

l 
C

o
s
t

ACE

CE2C

Fig. 5: Social cost (V)

30 39 48 57 66 75 84 93 102 111 120

K

1.4

2.2

2.9

3.6

4.4

5.1

5.9

6.6

7.4

8.1

8.8

S
o

c
ia

l 
C

o
s
t

AMCE

MCE2C

Fig. 6: Social cost (VII)
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Fig. 7: Social cost (VIII)

Because of space limit, we omit the evaluation results for

Setting IV, which show that MCE2C ensures a low social

cost in a computationally efficient manner. In Figure 6 and 7,

we consider DP games with larger problem instances. These

figures show that MCE2C invariably ensures much less social

cost than the baseline method AMCE. Again, because of space

limit, figures with evaluation results for Setting IX and X are

omitted, which show similar trends as Figure 6 and 7.

VII. CONCLUSION

In this paper, we study task pricing in multi-requester MCS

systems with dynamically arriving workers. We use Markov

game to model requesters’ pricing behaviors, and Markov cor-

related equilibrium (MCE) as the solution concept. We propose

that the platform uses the social cost-minimizing MCE to

coordinate requesters’ prices, which is self-enforcing, and opti-

mizes the system-wide objective of social cost. Technically, we

propose a computationally efficient algorithm to compute an

approximately optimal MCE. Through extensive performance

evaluation, we show numerically that our algorithm yields

close-to-minimum social cost in very short running time.
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