
Secure Broadcast Protocol for Unmanned Aerial
Vehicle Swarms

Hongpeng Guo∗, Tianyuan Liu∗, King-Shan Lui†, Claudiu Danilov‡, Klara Nahrstedt∗
∗University of Illinois at Urbana Champaign, †The University of Hong Kong, ‡Boeing

Email: {hg5, tliu60, klara}@illinois.edu, kslui@eee.hku.com, claudiu.b.danilov@boeing.com

Abstract—The technology advancement has made Unmanned
Aerial Vehicle (UAV) swarm a promising method to achieve
complicated missions that a single UAV cannot support. Leader-
followers formation is a widely used swarm management scenario
where a leader drone frequently broadcasts controlling messages
to all follower drones to achieve collaboratively a common mis-
sion. However, managing such a UAV swarm, especially when the
member drones dynamically join and leave the swarm, introduces
significant security challenges and performance overhead.

In this work, we propose a Swarm Broadcast Protocol (SBP)
to facilitate the security protection of leader-followers formation
based UAV swarms. SBP contains a security key management
scheme that manages a broadcast key among the swarm for
leader to broadcast encrypted messages to followers. When
swarm membership changes, the broadcast key will be updated
and synchronized among the swarm to maintain both backward
and forward secrecy. The overhead of SBP is small that only
constant computational overhead is needed for both swarm leader
and followers to achieve key synchronization when a new drone
joins regardless of the current swarm size. This feature would
highly reduce the overhead when there are many individual
drone joining events. Through experiments on network emulator,
we show that SBP achieves lowest bandwidth overhead and
CPU utilization to handle multiple swarm membership changing
events, comparing with two public-key-based swarm management
protocol baselines.

I. INTRODUCTION

The Unmanned Aerial Vehicles (UAVs), also known as
drones, are aircrafts that fly without humans on board. UAVs
are controlled either by remote controllers or on-board com-
puter systems autonomously [1, 2]. Advances in technologies
allow drones to carry sensing and communication units on
board. They thus can interact with each other within a certain
proximity, and fly as a group to accomplish a common mission.
Such UAV groups are usually referred to as swarms [3].
Comparing to a single drone, UAV swarms are more powerful
in many so-called Dull, Dirty, Dangerous (DDD) domains [4],
such as rescue, surveillance [5], bridging wireless networks [6]
and military operations, where a single drone cannot support
every facet of the mission.

In order to collaborate consistently, swarms must be able to
manage themselves in the sky with limited human intervention.
For example, a swarm of UAVs is controlled by computer
systems autonomously, or piloted by a single controller as

We gratefully acknowledge the support of Boeing grant SSOW-BRT-Hl
117-0003. The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the sponsors.

a whole. Leader-followers mechanism is a widely used and
investigated swarm management strategy [7, 8]. One UAV is a
leader that, through autopiloting or remote control, determines
the direction of the swarm and broadcasts commands to other
swarm members (followers) periodically. The swarm members
follow the commands and execute the tasks.

During the execution of a global task, it is quite common
for drones to join and leave the current swarm due to battery
limitation [1]. For example, a batch of drones may leave
the swarm at a charging point to refill, while another group
of UAVs join the swarm to continue executing the swarm
mission. Geography restrictions may also be a reason resulting
in dynamic swarm changes. The Federal Aviation Agency
(FAA) has established a series of restricted fly zones at lower
height over privacy-sensitive locations [9], where only drones
satisfying regulated specs but not other drones could fly over.
When flying across such restricted areas, unqualified drones
must leave the swarm, and some qualified new drones will
join the swarm to maintain the swarm functionality.

Despite all the benefits and potentials of UAV swarms, se-
curing the in-swarm communication is a challenging problem,
especially when the swarm membership is changing rapidly.
Theoretically, eavesdropping and man-in-the-middle attacks
can be prevented by encryption and signatures. However, if
the keys used are not secure, the security primitives cannot
be achieved. To avoid disclosing communication to previous
or future swarm members requires that the encryption key
must be immediately renewed and synchronized among the
whole swarm. In this work, we consider the scenario where
a swarm of UAVs work collaboratively on a mission along a
trajectory. New drones could join the swarm anytime during
the mission window individually. Some UAVs in the swarm
may leave in a batch to do refilling at charging points on
the path. We conclude three major challenges to realize key
updates as follows.
• Key establishment and updates must be fast. In this way,

newly join members can participate in the task sooner. By
changing keys fast, newly broadcast messages encrypted
using the new key can be sent out without much delay.

• Key updates must be reliable to tolerant unstable network
conditions. The wireless links between drones are vulner-
able to environment turbulence. Delay or loss of rekeying
messages may result in drones’ unavailability to decrypt any
subsequent communication and being out of control.

978-1-7281-6607-0/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

• The key management scheme must be light-weight and effi-
cient. The UAVs only embed very limited CPU and network
resources. Expensive rekeying computation or bandwidth
requirement would lead to drones communication failure
when the swarm size scales up.
In this paper, we present the design and implementation

of the Swarm Broadcast Protocol (SBP), which securely
broadcasts the real-time control messages from the swarm
leader to all the followers. At the beginning, SBP generates a
swarm broadcast key and makes the key synchronized among
the whole swarm. When membership changes, the leader will
re-calculate a new symmetric broadcast key using SBP and
broadcast a rekeying message to all valid members. SBP is
efficient and lightweight in handling frequent membership
changes. The computational overhead and message overhead
for a drone joining remains constant regardless of the current
swarm size, which outperforms many state-of-art broadcast
encryption methods [10–13] with overhead linearly to the
logarithm of swarm size. SBP is also resilient to unstable
network environment of long delay and packet loss, and
ensures that every packet sent through SBP can be successfully
decrypted by any swarm member even several recently sent
packets are lost. We outline three major contributions of the
paper as below:
• We present the Swarm Broadcast Protocol which secures the

broadcast communication of UAV swarms in Section IV-A,
IV-B, and IV-C. The rekeying processing time for drone
joining remains constant regardless of the swarm size, which
makes SBP very scalable.

• We design a resilience handling mechanism in Section
IV-D to maintain the resiliency of SBP in unstable network
environments.

• We validate and compare the SBP with two baseline public
key based protocols to show that SBP saves at least 40%
network bandwidth and 57% CPU processing time when
comparing with the two baselines V.

II. RELATED WORKS

To the best of our knowledge, secure broadcast protocol
to facilitate control of UAV swarms with highly dynamic
memberships has not been studied in the literature. Never-
theless, many works that study the following three problems
independently can be identified. They are (1) General security
and privacy issues related to UAVs, (2) Efficient broadcast
encryption protocols for teleconference and real-time infor-
mation services, and (3) Group or broadcast key management
schemes that are resilient to unstable network environments.

Security and privacy problems are the major concerns for
the pervasive deployment of UAV systems [14–16]. Various
security challenges have been identified and discussed in
the literature, such as eavesdropping, hijacking, Denial-of-
Services, location forgery and GPS spoofing [17–19]. The
work in [15] specifies different types of security issues and
vulnerabilities of UAV wireless communication and suggests
general defense methods. But they did not provide solution to
efficiently secure the UAV swarm communication. Kamesh et

al. proposed the scenario of dynamic swarm collaboration of
drones owned by different authorities in work [1], but left out
as an open problem how to secure the control communication
of such swarms.

Broadcast encryption protocols are widely studied in net-
work systems and cyberphysical systems, aiming to leverage
the efficiency of broadcast communication while maintaining
the confidentiality of broadcast contents [10–13, 20, 21]. By
leveraging a tree-like key management schemes, the works
[10–13] achieve computational and bandwidth overhead loga-
rithm to the swarm size. However, in the scenario when swarm
membership rapidly changes and drones joining dominates the
dynamic events, a constant joining overhead protocol will be
needed. The works [10–13] also require different rekeying
messages being constructed and sent to different members,
which leads to much overhead on the number of rekeying
messages upon membership changes. A protocol which rekeys
all swarm members with a single broadcast message will be
more preferred.

Various methods have been developed to facilitate group
or broadcast key management in unstable network conditions.
[22] and [23] present reliable multicast protocols to ensure
packet delivery, but the computational and bandwidth overhead
are too large to be used by UAV swarms. Perrig et al.
present an ELK [21] protocol which is resilient in unstable
networks, and introduces very little overhead to the receiver
side. However, this protocol assumes the sender has compu-
tational power strong enough as a server to handle significant
workload, which is not feasible for the UAV swarm leader to
adopt.

III. SYSTEM OVERVIEW

A. System Model

The system consists a swarm of drones and an administrator
which will configure the security primitives for all the drones.
We denote the set of drones as U = {u0, u1, u2, . . . }. Let
M0 be the initial swarm that contains some drones in U . A
membership change event is either a single join event or a
batch leave event. When multiple drones join the swarm, their
joining will be handled one by one. Membership change events
happen in sequence and we label them using ei, where i > 0
and ei happened before ej if i < j. A new swarm is formed
after each membership change event. We let the set of drones
in the swarm after event ei be Mi. Clearly, Mi ⊆ U for all
i.

Our secure broadcast scheme establishes a secure broadcast
key for each Mt. The key is generated based on a certain
sequence among the drones in Mt. Let mt

i be the index of
the ith drone in Mt. That is,

Mt = {umt
i
|0 ≤ i < |Mt|}

For simplicity, we assume the leader remains in the swarm
always and it is always the first drone in each sequence.

Example 1. Suppose that M0, the initial swarm, contains
drones u0, u2, u5, and u10. Let the sequence, denoted as M0,

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

be [0, 5, 2, 10]. Then, m0
0 = 0, m0

1 = 5, m0
2 = 2, and m0

3 =
10.

The index order of the sequence represents the order of
drones joining the swarm. When a new drone uj joins the
swarm in the single join event et, swarm Mt is formed by
including the new drone uj in Mt−1. That is, Mt = Mt−1 ∪
{uj}. The sequence Mt is formed by appending j to the end
of Mt−1.

Example 2. If u7 joins the initial swarm in Example 1, M1

becomes {u0, u2, u5, u7, u10} and M1 = [0, 5, 2, 10, 7].
When a batch of drones leaves the current swarm in event et,

Mt becomes a subset of Mt−1. The sequence Mt is formed
by removing the elements representing the leaving drones from
Mt−1.

Example 3. If u2 and u10 are leaving M1 in Example 2, M1

becomes {u0, u5, u7} and M2 becomes [0, 5, 7].

B. Broadcast Key Generation

For each swarm Mt, the broadcast key is generated accord-
ing to the sequence Mt using a Diffie-Hellman chain (DH
chain) mechanism. We first review the basic Diffie-Hellman
mechanism that has been used in many Internet protocols
to establish symmetric keys among a pair of communicating
parties.

Alice and Bob want to talk to each other. They have agreed
earlier on using g and p for DH key establishment. Alice
keeps a secret of her own ska, and Bob keeps his secret
skb. Alice sends Bob Ta = gska mod p and Bob sends
Alice Tb = gskb mod p. After receiving Ta = gska mod p
from Alice, Bob computes (Ta)

skb mod p. Similarly, Alice
computes (Tb)

ska mod p. Because,

(Ta)
skb mod p = (Tb)

ska mod p = gskaskb mod p,

Alice and Bob have established a shared key among them-
selves. Although eavesdroppers can obtain Ta and Tb, they
cannot compute the shared secret. This Diffie-Hellman mech-
anism has been widely used in many standard security proto-
cols.

In securing communication among a group of drones, we
use the Diffie-Hellman chain mechanism as shown in Figure 1
to establish a shared group key. Before any key establishment,
all drones agree on g and p to be used. Let the sequence of
drones in a certain swarm be u0, u1, ..., uk, where u0 is the
leader. We further assume ski is the secret of ui and denote
gski mod p be Ti. Let I0 be sk0. Ii = T

Ii−1

i mod p. Ik will
be the shared broadcast key K.

We now briefly explain how the leader and the followers,
other drones in the swarm, establish the shared key based on
the information they have. More details of the protocol can be
found in Section IV. The leader, u0, has I0 = sk0. It also has
the group membership information to determine the sequence
of the chain. By collecting gski from each follower, u0 can
compute K by computing Ii one by one. For follower ui,
it has ski. It can compute Ii by (gIi−1)ski mod p. With Ii
and gskj , where j > i, K can be computed. To simplify our

Fig. 1: Overview of Broadcast Key Generation

Notations Description

ski
Secret key assigned to drone ui

by the administrator.

Ti
Blind key of ui, can be calculated from ski
such that Ti = exp (g, ski) mod p

Kt The broadcast key used in swarm Mt

Bt
j

The Blind key of the j-th drone in swarm
sequence Mt. That is, if ui is the j-th
drone in Mt, we have Bt

j = Ti.

Itj
The j-th intermediate key of the
Diffie-Hellman chain for swarm Mt

S0, V0
The signing and verification key pair
of the swarm leader.

Sad, Vad
The signing and verification key pair
of the administrator.

TABLE I: Notations used by our protocol

discussion, we call gIi−1 blind keys generated by the leader.
In Section IV, we will explain how the followers acquire the
required information.

C. Authentication

To prevent man-in-the-middle attack, swarm access control
and key update information must be authenticated properly.
That is, (1) the leader must verify that a new joining drone
is sent by the administrator before include it into the swarm,
(2) the followers must verify that the key update information
comes from the leader before they update their keys accord-
ingly. We introduce two extra asymmetric sign-verify key
pairs, (Sad, Vad) and (S0, V0) for system authentication, which
are the sign-verify key pairs for administrator and swarm
leader respectively.

Every drone will be provided Vad and V0 by the admin-
istrator and they can thus verify if a message is singed by
administrator or swarm leader during the mission. The swarm
leader will also be equipped with S0 to sign all the key update
information before sending it to the followers. Further more,
the administrator will use Sad to sign the join message of
every follower before they take off, so that the swarm leader
is able to verify if the joining drone is actually sent by the
administrator when they receive a joining request. Details of
the authentication process will be provided in Section IV.

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

IV. SWARM BROADCAST PROTOCOL

In this section, we present the design details of the Swarm
Broadcast Protocol. We present the set of keys used in our
protocol in Table I.

A. Initial Swarm Formation

1) Protocol Details Walk Through. Before the drones can fly
and work on the mission, they must be configured by an
administrator to obtain the security primitives. Drone ui will
be configured with g, p, and ski. g and p are the constants
used in the Diffie-Hellman scheme described in Section III-B.
ski is the secret key of ui. Using ski, ui can generate its blind
key as Ti = gski mod p. Every drone will also be provided
key Vad to verify any administrator signed message during the
mission.

At the beginning of the task, the administrator will identify
a leader drone u0 and form an initial swarm M0 at the mission
trajectory starting point. The leader u0 will be further equipped
with a singing key S0 to sign its broadcast messages in the
swarm. Administrator provides every other drone V0 to verify
communications from the leader.

The administrator will inform u0 about the membership of
the initial swarm by sending it the unique swarm sequence M0

as well as the blind keys of all the swarm followers, which
are {Ti|i ∈ M0\{0}}. In Example 1, to allow all drones in
M0 to establish a shared key, the administrator sends u0 a
message containing

SignSad

([
0, 5, 2, 10

] ∣∣∣∣ {T5, T2, T10

})
With the swarm sequence and blind keys of all the followers,
the leader applies the Diffie-Hellman chain mechanism to
develop a broadcast encryption key K0. To allow each follower
to compute K0 on its own, the leader distributes (1) the swarm
sequence M0, (2) all Ti of the followers, and (3) the blind keys
generated by the leader. All messages sent from leader must
be signed by S0 for authentication.

To differentiate the Diffie-Hellman chains for different
swarms after different events at different points of time,
we augment the relevant symbols used earlier to include
superscripts for representing time. Formally, for swarm Mt

with sequence Mt = [mt
0,m

t
1, ...,m

t
|Mt|−1] after event et, the

intermediate keys in the Diffie-Hellman chain are Iti where
0 ≤ i < |Mt|. It0 is sk0 for all t. The blind keys generated by
the followers at t are Bt

i = g
skmt

i for 0 < i < |Mt|, and that
the intermediate keys can be computed as

Iti = exp (Bt
i , I

t
i−1) mod p

Figure 2 presents the Diffie-Hellman chain for Example 1.
After obtaining B0

1 = gsk5 = T5, B0
2 = gsk2 = T2 and B0

3 =
gsk10 = T10, the leader u0 will calculate all the intermediate
keys I0i ’s using the Diffie-Hellman chain mechanism one by
one, where 1 ≤ i ≤ 3. The last intermediate key I03 along the
key chain is used as the broadcast encryption key K0.

Fig. 2: Diffie-Hellman Chain Generated for Example 1

After K0 is established, the leader will send the key
information to the followers to calculate K0 on their own.
In Example 1, the key information broadcast by u0 should be,

SignS0

([
0, 5, 2, 10

] ∣∣∣∣ {T5, T2, T10

} ∣∣∣∣ {gI0
0 , gI

0
1 , gI

0
2
})

As a follower of the swarm, a drone ui is able to calculate
the broadcast key using the key information and its own secret
key ski. In Example 1, u2 will first check the swarm sequence
M0 to obtain its position in the key chain. As 2 is the third
element in the swarm sequence, m0

2 = 2. u2 thus has to
compute I02 and it requires gI

0
1 , which is the second element

of the leader generated blind keys. u2 then calculates the third
intermediate key as

I02 = exp (gI
0
1 , sk2) mod p

After I02 is obtained by u2, it is easy for it to calculate the
broadcast key

K0 = I03 = exp (B0
3 , I

0
2) = exp (T10, I

0
2) mod p

Note that all the drones in the swarm will keep the key
information in their memory to facilitate computation when
drones join or leave the swarm later. Specifically, the leader
will store all the intermediate keys I0i for 0 ≤ i < |M0|,
the followers’ blind keys B0

i for 1 ≤ i < |M0|, and gI
0
i for

0 ≤ i < |M0|− 1. A follower will keep the leader distributed
key information in its memory as well as all the intermediate
keys it computed. In Example 1, u2 will keep I02 and I03 in its
memory for later use.

After the followers have calculated the broadcast encryp-
tion key, they will be able to decrypt the encrypted control
messages sent by the leader and fly to execute the mission.
2) Computation and Communication Overhead. It is easy
to observe that the computational complexity for the leader
to calculate the broadcast key is linear to the number of
followers in the initial swarm. Specifically, the number of
heavy exponential operations is 2(|M0| − 1), half of which
calculate I0i s, for 1 ≤ i < |M0| and another half calculate
gI

0
j s, for 0 ≤ j < |M0| − 1.
The computational overhead for a follower ui to calculate

the broadcast key from the key information varies according
to its position in the swarm sequence. In the worst case when
ui is the first follower in the sequence, it needs to execute

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Drone Join Event on Example 2

|M0| − 1 exponential operations to derive K0. On the other
hand, if ui is the last drone in the sequence, it can directly
calculate K0 by a single exponentiation.

Overall, we show that the computational complexity for
a drone in the swarm initialization phase is O(|M0|). As
the swarm initialization happens only once before the drones
fly to the sky, this overhead will not influence the swarm
performance.

The communication overhead for swarm initialization de-
pends on the length of key information sent from the leader to
followers, which contains (1) M0, (2), B0

i for 1 ≤ i < |M0|,
and (3) gI

0
j for 0 ≤ j < |M0| − 1. We interpret the

message length as the number of cryptography keys being
transmitted, which is 2(|M0| − 1). We can thus conclude the
communication overhead for swarm initialization is O(|M0|).
Note that the key information distributed to all followers is
the same. That is, no matter how large the swarm is, a single
broadcast message is sufficient for all followers to establish
the same shared key.

B. Join Event

Suppose event et is a join event where drone
uj joins the swarm. Mt = [mt

0,m
t
1, ...,m

t
|Mt|−1] =

[mt−1
0 ,mt−1

1 , ...,mt−1
|Mt−1|−1, j]. The Diffie-Hellman chain of

Mt can be constructed from the one of Mt−1 by appending
one more pass. Given It−1

|Mt−1|−1 = Kt−1 which is the shared
key of swarm Mt−1, the shared key of Mt = It|Mt|−1 can be
computed by exp (gskj ,Kt−1) mod p. This operation takes
only constant time and is independent of the size of the
current swarm.

1) Protocol Details Walk Through. When the swarm is flying
along the mission trajectory, a new drone could join the swarm
at any time in the mission window. As shown in figure 3, the
join event is triggered by the joining drone, denoted as uj , to
send a join message containing j and Tj to the swarm leader
(step 1). Refer to example 2, when u7 joins the swarm, it

will send a join message containing SignSad

(
7 || T7

)
to the

swarm leader u0. Note that the join message is singed by the
administrator before the follower drone takes off (step 0),

so that the leader can verify a valid joiner upon join event.
After receiving the join message and authentication, the swarm
leader should update the broadcast key for the whole swarm
to maintain backward secrecy.

Figure 4 presents the Diffie-Hellman chain for Example
2. As the join event of u7 will only append a new pass to

Fig. 4: Diffie-Hellman Chain Generated for Example 2

the original Diffie-Hellman chain structure, all the existing
intermediate and blind keys will remain the same after the
join event has happened, that is, I1i = I0i for 0 ≤ i ≤ 3,
gI

1
i = gI

0
i for 0 ≤ i ≤ 2 and B1

i = B0
i for 1 ≤ i ≤ 3. After

obtaining B1
4 = gsk7 , u0 will only process two exponential

operations to update the key information, which are, K1 =
I14 = exp (B1

4 , I
1
3) mod p and gI

1
3 = exp (g, I13) mod p.

As K1 is established, the leader distributes the key infor-
mation to all followers, including the new drone u7, to update
the broadcast key to be K1 on their own (step 2). Suppose
uj joins the swarm in event et, leader sends out

SignS0

(
j

∣∣∣∣ Tj

∣∣∣∣ gI
t
|Mt−2|

)
to all followers. In Example 2, the key information being
distributed is

SignS0

(
7

∣∣∣∣ T7

∣∣∣∣ gI
1
3

)
An existing follower can update the broadcast key using Tj .

In Example 2, u2 is a swarm member before u7 joining the
swarm, and knows K0, the original broadcast key. Then u2

can calculate the new broadcast key as

K1 = exp (T7,K0) mod p

For the new joining drone u7, it will calculate the broadcast
key as

K1 = exp (gI
1
3 , sk7) mod p

With the above process, all the old and new swarm members
will use K1 as the shared broadcast key for subsequent com-
munication encryption. The followers will finally acknowledge
the swarm leader after their keys are updated (step 3).

2) Computation and Communication Overhead. As we men-
tioned in Section IV-B1, the number of exponential operations
for the swarm leader to add a new drone to the swarm
is always 2 no matter how large the swarm size is. For a
follower, regardless it is the new drone or an existing one,
the computational overhead to calculate the new shared key
is always 1 cryptographic exponentiation. Therefore, we show
that the computational overhead for a join event is O(1), which
is independent of the swarm size.

The communication overhead for a join event depends on
the length of key information sent from the leader to followers

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Drone Leave Event on Example 3

to update the shared broadcast key. The key information for
a drone joining only contains two cryptographic keys, which
are (1) the blind key of the joining drone Tj , and (2) the
blind version of the broadcast key before uj joins the swarm.
Therefore, we show that the communication overhead for a
join event is O(1).

C. Batch Leave Event

Now we consider a batch leave event et where one or more
drones leave the swarm. Mt ⊂ Mt−1 and Mt ⊂ Mt−1. Note
also that {Bt

i |0 < i < |Mt|} ⊂ {Bt−1
i |0 < i < |Mt−1|}.

Therefore, the leader can compute the shared key for Mt by
going through the Diffie-Hellman chain without acquiring any
new information.

1) Protocol Details Walk Through. There are several scenarios
where one or more drones leave the swarm. First, a drone may
fail in the middle of the journey. In this case, the leader should
exclude it from the swarm and establish a different broadcast
key after detecting such failure. A drone, on the other hand,
can initiate leaving the swarm. The drone should send a
message to the leader and the leader can act accordingly.

In this paper, we also consider situations that multiple
drones leave the swarm at the same time. While the swarm is
flying along the mission path, the leader will collect the real-
time battery readings from the followers periodically. When
the swarm is approaching a charging point, the leader will
choose and inform a subset of drones to leave the swarm to
refill at the charging points. Let et be a batch leaving event.
We denote Lt as the set of drones leaving the swarm Mt−1

at event et, such that Lt = Mt−1 −Mt.
This batch leave event is triggered by swarm leader u0

sending of a leave message to the drones in Lt (step 4). The
leave message can contain instruction to inform what a leaving
drone should do. After receiving acknowledgments from the
leaving drones (step 5), the leader must update the broadcast

key and synchronize it with the remaining swarm members as
soon as the batch leave event happens.

Refer to the batch leave event in example 3. As u2 and
u10 leave the swarm, the swarm contains only three drones
after the batch leaving, that is M2 = [0, 5, 7]. Because drone
leaving breaks the original structure of the DH chain, u0 has to
reestablish the key chain following the same way as in Section
IV-A. Note that although the key chain is reconstructed, some
previous results can be used to reduce computation. In the key
chain generated in example 3, I20 and I21 are the same as I10

and I11 , respectively. The only exponential computation needed
in the key update process is

K2 = I22 = exp (gsk7 , I21) mod p

In general, on a batch leave event et, let k be the position index
of the first leaving drone along swarm sequence Mt−1, 1 ≤ k.
We can observe that the first k passes of the DH chain remain
the same on the leave event. Reestablishing the DH chain only
requires calculating the remaining |Mt|−k intermediate keys
and |Mt| − k − 1 blind intermediate keys.

When the new key is generated, the leader would distribute
the key information for every staying follower of the swarm
Mt to calculate the new broadcast key Kt (step 6). The key

information is

SignS0

([
mt

k−1, . . .m
t
|Mt|−1

] ∣∣∣∣ {Bt
k, . . . , B

t
|Mt|−1

}
∣∣∣∣ {gIt

k−1 , . . . , gI
t
|Mt|−2

})
For the first k − 1 followers in Mt, Itk−1 is a common
knowledge to them. They can derive all intermediate keys
after Itk−1 one by one and thus obtain Kt. For the last
Mt−k followers, they will derive Kt using the same method
described in Section IV-A using their secret keys.

In Example 3, because u2 is the first leaving drone from
M1 and that m1

2 = 2, we can get k = 2. The key information
being distributed is

SignS0

([
5, 7

] ∣∣∣∣ {B2
2 = T7

} ∣∣∣∣ {gI2
1
})

For follower u5, it knows I21 and then it can obtain K2 =
exp (gsk7 , I21) mod p. For follower u7, it can calculate the
new broadcast key K2 = exp (gI

2
1 , sk7) mod p. All staying

swarm members thus can communicate securely using K2.
The followers will finally keep the leader informed that their
keys are updated (step 7).

2) Computation and Communication Overhead. As we men-
tioned in Section IV-C1, the number of exponential operations
for the swarm leader to handle batch leave depends on the
position index k of the first leaving drone along the swarm
sequence. In general, the number of exponential operations
for the leader of swarm Mt after a batch leave event et
is max (0, 2(|M| − k)− 1) for 1 ≤ k ≤ |M|. Overall,
the worst case computational overhead for swarm leader is
O(|M|). Similarly, the worst case computational overhead for
followers to update the key is also O(|M|).

The number of keys contained by the key information
is also proportional to k and the swarm size, which is
max (0, 2(|M| − k)− 1) for 1 ≤ k ≤ |M|. The worst case
communication overhead for batch leave events is O(|M|).

D. Resilience Handling

UAV swarm is a very dynamic structure even if the group
membership does not change, because the distance and com-
munication channel quality between two UAVs can change
very frequently. That is, the wireless links among drones can

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

be very unreliable that packets may be lost [1]. It is thus
very important for a UAV protocol to be resilient in unstable
network circumstances.

Our protocol distributes key information through a single
broadcast message in each re-keying. To distinguish the keys
used after different events, the leader also inserts a version
number in the message. A follower who receives the message
should acknowledge the leader (step 3 and 7). The leader

then knows whether all followers have received the new key
information successfully. If not all followers have received the
message, the key information will be appended in a regular
broadcast message that is encrypted using the new key. Note
that the same key information will be appended no matter how
many followers and which followers have not received the key
information. Followers who have not received the new key
information earlier can still decrypt the message using the key
information sent with the encrypted message.

For example, suppose u5 and u10 did not receive the new
key information sent for the join event of u7 in Example 2. As
leader u0 did not get the acknowledgement from u5 and u10,
when it sends out a new broadcast message, while it uses the
new key K1 to encrypt, it also sends out the key information.
Then, when u10 receives the new message, it knows how to
develop the new key and decrypt the message.

It is possible that a follower still has not received the
new key information before another event occurs. That is, in
Example 3, by the time u2 and u10 leave, u5 still has not
received the key information for K1. In this case, the leader
can decide whether it still wants u5 to stay. If so, the leader
can append all necessary key information to a message. If the
leader has decided to drop u5, it can distribute a new key
without including u5 as a member.

It is worth noting that as our protocol uses broadcast
messages to relay key information, the overhead in handling
message loss is very minimal when compared with other pro-
tocols that are not designed specifically for UAVs. Protocols
that require different messages to be constructed for different
followers would have very high overhead when the network
is unstable.

V. SIMULATIONS & EXPERIMENTS

In this section, we first show the fast execution time
and short rekeying message length of the Swarm Broadcast
Protocol (SBP) in updating the broadcast keys among a UAV
swarm. We then apply SBP in a swarm management scenario
of 90 seconds with multiple UAV mobility events using CORE
network emulator [24, 25] to demonstrate that SBP handles the
dynamic swarm changes with pretty low bandwidth overhead
and CPU utilization. Before going into the details of our
experiment designs, we first introduce two baseline protocols
to compare SBP with as below.

A. Two Baseline Protocols

The first baseline approach is the Public Key Broadcast Pro-
tocol (PKB). PKB assigns every drone an asymmetric key pair.
The swarm leader has the knowledge of public keys of all the

follower drones. PKB generates a random symmetric broadcast
key to encrypt broadcast contents. The symmetric broadcast
key is securely distributed to every individual follower by
being encrypted using the public key of the follower. When a
drone joins or leaves the swarm, a new symmetric key must be
generated and synchronized to the followers using asymmetric
key infrastructure to maintain forward and backward secrecy.

The second baseline method is the Public Key Unicast
Protocol (PKU). Similar to PKB, every drone will be assigned
an asymmetric key pair. But the leader will maintain a unique
symmetric communication key with every single follower.
All the communication between the swarm leader and fol-
lowers happens in a P2P manner. With the PKU protocol,
broadcast key synchronization is not needed upon dynamic
swarm events. Nevertheless, content delivery will consume
much more computation and bandwidth resources. A single
message broadcast is actually multiple unicast sessions for
PKU.

B. Key Synchronization Evaluation

As the major overhead of the key management protocols ap-
pears only when the swarm membership dynamically changes
and the leader drone synchronizes the symmetric broadcast key
among the swarm, we only compare the performance of SBP
and PKB on dynamic swarm events. We are interested in three
metrics: (1) computational overhead for key synchronization
on swarm leader, (2) computational overhead on the followers,
and (3) total key information length sent from the swarm
leader to followers for updating the broadcast key.

We initiate a UAV swarm containing M drones, of which
one is the swarm leader and the others are followers. At the
beginning of the experiment, the broadcast key is synchronized
among the swarm. To evaluate the performance of the broad-
cast protocols, we introduce two types of dynamic events,
which are single drone join event and a batch of K drones
leaving. In our simulation, We choose RSA as the asymmetric
encryption algorithm used in PKB and set the same key size
for SBP and PKB to maintain comparable security strength.
For either protocol, the symmetric broadcast key size is set
to be 256-bit to work with AES-256 encryption method. We
further choose 1024-bit RSA key pairs for authentication on
both two protocols.

We measure the computational time and message length
when two different events occur. In both events, the key size
is 1024 bits for both SBP and PKB. For Event I, we set 5
initial swarm sizes as 50, 80, 110, 140 and 170 to measure
the results when a new drone joins these swarms. For Event
II, the initial 5 swarm sizes are the same as those of event I,
but we measure the results when a batch of 10 drones leave
the swarm.

In Fig. 6a and Fig. 6b, we show the computational over-
head for broadcast key synchronization of swarm leader and
follower, respectively, when a new drone joins the existing
swarm. It can be observed that the SBP introduces only
constant execution overhead for both leader and follower
drones, while the processing time for a PKB leader to update

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

(a) Leader computational overhead (I) (b) Follower computational overhead (I) (c) Message length for key synchronization
(I)

(d) Leader computational overhead (II) (e) Follower computational overhead (II) (f) Message length for key synchronization
(II)

Fig. 6: Computational and Message Overheads for Key Synchronization

the broadcast key grows linearly with the swarm size and
is significantly longer than SBP. In Fig. 6c, we compare
the key information length sent from leader to followers to
update the broadcast key when drone joining happens. As the
figure shows, SBP will generate rekeying message of almost
constant length regardless of the swarm size, while PKB
will generate much longer rekeying message, whose length
increases linearly with the swarm size.

In Fig. 6d and Fig. 6e, we show the computational overhead
of the swarm leader and a follower, respectively, when drone
leaving happens. It can be observed that the performance of
SBP is better than PKB for the swarm leader in all five initial
sizes. A SBP follower may spend more time than PKB to
update the broadcast key on drones leaving. Nevertheless, the
average execution time for a SBP follower is much short than
the leader and is less than 20ms even the swarm size is 170.
The execution overhead for a SBP follower is manageable with
swarm size scaling up. Fig. 6f suggests that SBP can generate
much shorter key information to synchronize the broadcast key
than PKB under the batch leave scenario.

C. Swarm Management Scenario Evaluation

In this experiment, we implement a UAV swarm using
the CORE network emulator [24, 25] and introduce multiple
dynamic events to the swarm during a time window of 90
seconds. We compare SBP with two baseline protocols, PKB
and PKU, to demonstrate that our Swarm Broadcast Protocol is
efficient and lightweight in managing a dynamic UAV swarm.

Time (s) 15 [25, 45] 55 [65, 85]
Dynamic
Events 5 join 1 join/ 2s 10 leave 1 join/ 2s

TABLE II: Swarm dynamic events

The swarm contains 10 drones in the beginning with one of
them being the swarm leader. The leader sends an encrypted 8
KB control message to every swarm follower every second to
realize the swarm control. We measure the network data and
CPU utilization for the swarm leader in 90 seconds to evaluate
the overhead caused by the swarm management process. We
set the key size of all three protocols to be 1024-bit in this
experiment.

During the 90s swarm management, we inject multiple
dynamic events as shown in Table II. During the first 15
seconds, the swarm remains stable and the broadcast key is
synchronized among all the UAVs. At time 15s, five drones
join the swarm at the same time, and the swarm size becomes
15. During interval [25s, 45s], a new drone joins the swarm
every two seconds. At the 55s moment, ten drones leave the
swarm. The last dynamic events happen between 65s to 85s,
when ten drones join the swarm one by one every two seconds.
We present the bandwidth and CPU utilization measurement
results of the swarm leader in Fig. 7.

Fig. 7a presents the swarm size vs time. Fig. 7b shows the
bandwidth overhead of the three protocols. It can be observed
that the overhead of PKU is significantly higher than the
other two methods and dominates in the figure due to its
unicast nature. To better observe the difference of SBP and

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Swarm Management Scenario Evaluation Results

PKB, we plot the bandwidth overhead of SBP and PKB in
Fig. 7c. As Fig. 7c suggests, SBP and PKB occupy similar
bandwidth when the swarm is stable, but PKB will consume
much more bandwidth when drones join or leave the swarm.
The bandwidth consumed by SBP, on the other hand, is almost
constant and close to the 8 kbps baseline even when the swarm
is highly dynamic.

Fig. 7d shows the results of CPU utilization measurements.
As PKU protocol has to encrypt the control message for each
follower using the pair-wise symmetric key, it has much higher
CPU utilization than the other two methods. PKB maintains
low CPU utilization when the swarm is stable, but occupies
much more computational resources when dynamic events
happen. SBP maintains pretty low CPU utilization either when
swarm membership changes or when the swarm is stable.

We also apply SBP in unstable networks to show that our
resilience handling method is efficient and introduces very
little bandwidth overhead. We set the packet loss rate to be 0%,
10%, 20% and 30%, respectively, and measure the occupied
network bandwidth of SBP through the network emulator.
Through measurements, we get the average bandwidth occu-
pation of the four network conditions to be 11.71 kbps, 12.11
kpbs, 12.31 kbps and 12.86 kbps. We show that the extra
bandwidth overhead for resilience handling is pretty small
(within 10%) even the packet loss rate is as high as 30%.

VI. CONCLUSION

In this work, we consider the broadcast security issue in
UAV swarms with dynamic memberships. We designed the
Swarm Broadcast Protocol, which manages the broadcast key
to maintain forward and backward secrecy and is resilient
to unstable wireless network conditions. Consequently, our
protocol facilitates secure management of the leader-followers
formation UAV swarms with low communication and compu-
tation overhead.

REFERENCES
[1] K. Namuduri, S. Chaumette, J. H. Kim, and J. P. Sterbenz, UAV Networks

and Communications. Cambridge University Press, 2017.
[2] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A

tutorial on uavs for wireless networks: Applications, challenges, and
open problems,” IEEE Communications Surveys & Tutorials, 2019.

[3] H. Shakhatreh, A. Khreishah, J. Chakareski, H. B. Salameh, and
I. Khalil, “On the continuous coverage problem for a swarm of uavs,”
in 2016 IEEE 37th Sarnoff Symposium.

[4] D. of Defense, “Unmanned aerial vehicle roadmap 2000-2025,” Depart-
ment of Defense, 2001.

[5] Y. Yang, Z. Hu, K. Bian, and L. Song, “Imgsensingnet: Uav vision
guided aerial-ground air quality sensing system,” in IEEE INFOCOM,
2019.

[6] M. Moradi, K. Sundaresan, E. Chai, S. Rangarajan, and Z. M. Mao,
“Skycore: Moving core to the edge for untethered and reliable uav-based
lte networks,” in ACM MobiCom, 2018.

[7] Z. Liu, X. Yu, C. Yuan, and Y. Zhang, “Leader-follower formation
control of unmanned aerial vehicles with fault tolerant and collision
avoidance capabilities,” in 2015 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE.

[8] M. Chen, F. Dai, H. Wang, and L. Lei, “Dfm: A distributed flocking
model for uav swarm networks,” IEEE Access, 2018.

[9] Faa summary of small unmanned aircraft rule (part 107). [Online].
Available: https://goo.gl/JbpgST

[10] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM transactions on networking, 2000.

[11] W. He, Y. Huang, R. Sathyam, K. Nahrstedt, and W. C. Lee, “Smock: a
scalable method of cryptographic key management for mission-critical
wireless ad-hoc networks,” IEEE Transactions on Information Forensics
and Security, 2009.

[12] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” in ACM CCS, 2000.

[13] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner, “On
ends-to-ends encryption: Asynchronous group messaging with strong
security guarantees,” in ACM CCS, 2018.

[14] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-
Rodriguez, and J. Yuan, “Survey on uav cellular communications:
Practical aspects, standardization advancements, regulation, and security
challenges,” IEEE Communications Surveys & Tutorials, 2019.

[15] D. He, S. Chan, and M. Guizani, “Communication security of unmanned
aerial vehicles,” IEEE Wireless Communications Magazine, 2017.

[16] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, “Cyber security
threat analysis and modeling of an unmanned aerial vehicle system,”
2012 IEEE Conference on Technologies for Homeland Security (HST).

[17] M. Hooper, Y. Tian, R. Zhou, B. Cao, A. P. Lauf, L. Watkins, W. H.
Robinson, and W. Alexis, “Securing commercial wifi-based uavs from
common security attacks,” in IEEE MILCOM, 2016.

[18] E. Vattapparamban, İ. Güvenç, A. İ. Yurekli, K. Akkaya, and S. Uluağaç,
“Drones for smart cities: Issues in cybersecurity, privacy, and public
safety,” in 2016 International Wireless Communications and Mobile
Computing Conference (IWCMC).

[19] T. Liu, A. Hojjati, A. Bates, and K. Nahrstedt, “Alidrone: Enabling
trustworthy proof-of-alibi for commercial drone compliance,” 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS).

[20] A. T. Sherman and D. A. McGrew, “Key establishment in large dynamic
groups using one-way function trees,” IEEE transactions on Software
Engineering, 2003.

[21] A. Perrig, D. Song, and D. Tygar, “Elk, a new protocol for efficient
large-group key distribution,” in Proceedings 2001 IEEE Symposium on
Security and Privacy. S&P 2001.

[22] X. R. Xu, A. C. Myers, H. Zhang, and R. Yavatkar, “Resilient multicast
support for continuous-media applications,” in NOSSDAV’97. IEEE,
1997.

[23] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” ACM SIGCOMM Computer Communication Review, 1995.

[24] Core, common open research emulator, url =
http://coreemu.github.io/core/, urldate = Oct, 2018.

[25] N. Suri, A. Hansson, J. Nilsson, P. Lubkowski, K. Marcus, M. Hauge,
K. Lee, B. Buchin, L. Mısırhoğlu, and M. Peuhkuri, “A realistic military
scenario and emulation environment for experimenting with tactical
communications and heterogeneous networks,” in 2016 ICMCIS. IEEE.

Authorized licensed use limited to: University of Illinois. Downloaded on September 27,2022 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

