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Abstract—Recent years have witnessed the emergence of mobile crowd sensing (MCS) systems, which leverage the public crowd
equipped with various mobile devices for large scale sensing tasks. In this paper, we study a critical problem in MCS systems, namely,
incentivizing worker participation. Different from existing work, we propose an incentive framework for MCS systems, named Thanos,
that incorporates a crucial metric, called workers’ quality of information (Qol). Due to various factors (e.g., sensor quality and
environment noise), the quality of the sensory data contributed by individual workers varies significantly. Obtaining high quality data
with little expense is always the ideal of MCS platforms. Technically, our design of Thanos is based on reverse combinatorial auctions.
We investigate both the single- and multi-minded combinatorial auction models. For the former, we design a truthful, individual rational,
and computationally efficient mechanism that ensures a close-to-optimal social welfare. For the latter, we design an iterative
descending mechanism that satisfies individual rationality and computational efficiency, and approximately maximizes the social
welfare with a guaranteed approximation ratio. Through extensive simulations, we validate our theoretical analysis on the various

desirable properties guaranteed by Thanos.

Index Terms—Incentive mechanism, quality of information, mobile crowd sensing

1 INTRODUCTION

HE ubiquity of human-carried mobile devices (e.g.,

smartphones, smartwatches) with a plethora of on-
board and portable sensors (e.g., accelerometer, compass,
camera) has given rise to the emergence of various people-
centric mobile crowd sensing (MCS) systems [1], [2], [3], [4]. In
a typical MCS system, a cloud-based platform aggregates
and analyzes the sensory data provided by a crowd of par-
ticipants, namely (crowd) workers, instead of professionals
and dedicatedly deployed sensors. The mobile devices of
participating workers collect and may process in certain
level the data before submitting them to the platform.

Such MCS systems hold a wide spectrum of applications
that cover almost every corner of our everyday life, includ-
ing healthcare, ambient environment monitoring, smart
transportation, indoor localization, and many others. For
example, MedWatcher [1] is a US FDA advocated MCS
system for post-market medical device surveillance. Partici-
pating workers upload photos of their medical devices to a
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cloud-based platform using the MedWatcher mobile appli-
cation, which help identify visible problems with the devi-
ces. The platform aggregates and analyzes the worker-
provided information, sends reports to the FDA and alerts
medical device users about device problems. Such a crowd-
sourcing paradigm enables easier detection of device safety
issues and faster propagation of alerts to medical device
users compared to traditional reporting methods such as
mail or telephone. Moreover, air quality monitoring [2] is
another area where MCS systems obtain their recent popu-
larity. In such systems, crowdsourced air quality data are
aggregated from a large number of workers using air qual-
ity sensors ported to their smartphones, which help esti-
mate the city or district level air quality.

Participating in such crowd sensing tasks is usually a
costly procedure for individual workers. On one hand, it
consumes workers’ resources, such as computing power,
battery and so forth. On the other hand, many sensing tasks
require the submission of some types of workers’ sensitive
private information, which causes privacy leakage. For
example, by uploading the photos of their medical devices,
workers reveal the types of their illnesses. By submitting air
quality estimation samples, workers usually reveal informa-
tion about their locations. Therefore, without satisfactory
rewards that compensate participating costs, workers will
be reluctant to participate in the sensing tasks.

Aware of the paramount importance of stimulating
worker participation, the research community has recently
developed a series of game-theoretic incentive mechanisms
for MCS systems [5], [6], [7], [8], [9], [101, [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [301, [31], [32], [33], [34], [35], [36], [37].
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Fig. 1. A MedWatcher MCS system example (three workers try to upload
the photos of the error message "Ex3” on the screens of their blood glu-
cose meters to the MedWatcher platform. The prices that the three work-
ers ask for cost compensation are 100$, 103, and 13, respectively.).

However, most of the existing mechanisms fail to incorpo-
rate one important aspect, that is workers’ quality of informa-
tion (Qol), into their designs. The meaning of Qol varies for
different applications. For example, in the aforementioned
MedWatcher system [1] Qol refers to the quality (e.g., reso-
lution, contrast, sharpness) of uploaded photos. Higher
quality ones will help the platform better identify visible
device problems. In air quality monitoring MCS systems
[2], Qol means a worker’s estimation accuracy of air quality.
The Qol of every worker could be affected by various fac-
tors, including poor sensor quality, environment noise, lack
of sensor calibration, and so forth.

To compensate the cost of each worker’s participation,
existing incentive mechanisms have used workers’ bidding
prices as an important metric to allocate sensing tasks.
However, as shown in the example in Fig. 1, Qol is also a
major factor that should be considered together with bid-
ding prices. Although worker 1 has the highest quality
photo, her high price prohibits the platform from requesting
her data. Furthermore, despite worker 3’s low price, the
platform will not be interested in her data either, because
her low quality photo could hardly contribute to identifying
the error message “Er3”. By jointly considering price and
Qol, the platform will select worker 2 with medium price
and acceptable photo quality as the data provider.

Therefore, in this paper, we propose a Qol aware incentive
framework for MCS systems, named Thanos." Considering
workers’ strategic behaviors and the combinatorial nature of
the tasks that every worker executes, we design Thanos based
on reverse combinatorial auctions, where the platform acts as the
auctioneer that purchases the data from participating work-
ers. Not only do we study the single-minded scenario where
every worker is willing to execute one subset of tasks, but also
we investigate the multi-minded case in which any worker
might be interested in executing multiple subsets of tasks.
Similar to the traditional VCG mechanisms [38], [39], Thanos
also aims to maximize the social welfare. Mechanism design
for combinatorial auctions is typically challenging in that usu-
ally we aim to design a computationally efficient mechanism
with close-to-optimal social welfare in the presence of an
NP-hard winner determination problem, which meanwhile
satisfies truthfulness and individual rationality. Addressing all
these challenges, our paper has the following contributions.

1. The name Thanos comes from incenTive mecHanism with quAl-
ity awareNess for mObile crowd Sensing.
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e Different from most of the previous work, we design
a Qol aware incentive framework for MCS systems.

e We use reverse combinatorial auction to design a
truthful, individual rational and computationally
efficient incentive mechanism that approximately
maximizes the social welfare with a guaranteed app-
roximation ratio for the single-minded case.

e For the multi-minded case, we design an iterative
descending mechanism that achieves close-to-optimal
social welfare with a guaranteed approximation ratio
while satisfying individual rationality and computa-
tional efficiency.

In the rest of this paper, we first discuss the past litera-
ture that are related to this work in Section 2, and introduce
the preliminaries in Section 3. Then, we provide the design
and analysis of Thanos for the single- and multi-minded
scenarios in Sections 4 and 5, respectively. In Section 6, we
summarize our theoretical results about the proposed mech-
anisms, and in Section 7, we conduct extensive simulations
to validate the desirable properties of Thanos. Finally in
Section 8, we conclude this paper.

2 RELATED WORK

Aware of the significance of attracting worker participation,
the research community has, thus far, developed a series of
incentive mechanisms [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [171, [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37] for MCS systems. Among them, game-theoretic incen-
tive mechanisms [5], [6], [7], [8], [9], [101, [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], which utilize either auc-
tion [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], or other game-theoretic mod-
els [5], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], have gained increasing popularity, as they are capable
of dealing with workers’ strategic behaviors.

Authors in [5], [6] design reverse auction-based incentive
mechanisms. However, workers’ strategic behaviors about
bidding task sets are not incorporated into these models.
Similar to the platform-centric model in [5], Duan et al. [23]
propose a Stackelberg game-based incentive mechanism,
which deals with the asymmetric information between
workers and the platform. Various other unique aspects,
such as location awareness [7], [26], network effects [28],
privacy preservation [13], [14], sybil-proofness [22], as well
as contest design [27], have been integrated into prior incen-
tive mechanisms. Furthermore, other lines of past literature
investigate MCS systems with multiple task requesters [8],
[18], [19], [24], [25], or with online arrivals of workers and
tasks [9], [10], [16], [17], [31], [32].

A common feature of the aforementioned mechanisms is
that they do not consider workers” Qol in their mechanism
designs. This is the major difference with our mechanisms
proposed in this paper.

Although workers” Qol is taken into consideration in sev-
eral existing mechanisms [11], [12], [20], [21], [29], [30], [34],
[35], [37], our paper is different from them in various ways.
Some of these work [11], [12], [29], [34] assume either work-
ers have identical Qol [34], or their sensing cost distribu-
tions are known a priori [11], [12], [29]. However, we do not
leverage such assumptions in this paper. The Qol aware
mechanisms in [35], [37] do not utilize game-theoretic
frameworks, and thus it cannot handle users’ strategic
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behaviors as our mechanisms. Furthermore, there exist
other quality-driven mechanisms with objectives, including
allocating fine-grained sensing tasks [20], providing long-
term incentives [21], dealing with malicious and colluding
workers [30], that are different from ours.

3 PRELIMINARIES

In this section, we present an overview of MCS systems, our
auction model and design objectives.

3.1 System Overview

The MCS system model considered in this paper consists of
a platform residing in the cloud and a set of N workers,
denoted as N = {1,..., N}. The workers execute a set of M
sensing tasks, denoted as 7 = {ty,..., 7y} and send their
sensory data to the platform. The workflow of the system is
described as follows.

1)  First, the platform announces the set of sensing tasks,
T, to workers.

2)  Then, the platform and workers enter the auctioning
stage in which the platform acts as the auctioneer
that purchases the sensory data collected by individ-
ual workers. Every worker ¢ € A submits her bid,
which is a tuple (I';, b;) consisting of the set of tasks
I'; € T she wants to execute and her bidding price b;
for executing these tasks.

3) Based on workers’ bids, the platform determines the
set of winners, denoted as S C A/ and the payment
to all workers, denoted as P = {p1,...,pn}. Specifi-
cally, a loser does not execute any task and receives
zero payment.

4)  After the platform receives winners’ sensory data, it
gives the payment to the corresponding winners.

One major difference between this paper and most of

the previous work is that we integrate the quality of
information corresponding to every worker, denoted as
¢ ={q,...,qy}, into our incentive mechanisms. In the
following Section 3.2, we describe in detail the Qol
model adopted in this paper.

3.2 Qol Model

Generally speaking, Qol indicates the quality of workers” sen-
sory data. The definition of Qol varies for different applica-
tions. For example, in the MedWatcher system [1], Qol refers
to the quality (e.g., resolution, contrast, sharpness) of uploaded
photos. Photos with higher quality will help the platform bet-
ter identify visible problems with medical devices. In air qual-
ity monitoring MCS systems [2], Qol refers to a worker’s
estimation accuracy of air quality. In practice, workers” Qols
are usually affected by various factors, including sensing effort
level, sensor quality, background noise, viewing angles, dis-
tance to the observed event or object, and many others.

We assume that the platform maintains a historical
record of workers’ Qol profile ¢ used as inputs for winner
and payment determination. There are many methods for
the platform to calculate workers” Qols. Intuitively, in the
cases where the platform has adequate amount of ground
truth data, Qols can be obtained by directly calculating the
deviation of workers” data from the ground truths. How-
ever, even without ground truths, Qols can still be effec-
tively inferred from workers’ data by utilizing algorithms
such as those proposed in [40], [41]. Alternatively in many
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applications, Qols can be inferred from other factors (e.g.,
the price of a worker’s sensors, her experience and reputa-
tion of executing specific sensing tasks) using methods pro-
posed in previous studies such as [42]. Note that the
mechanisms proposed in this paper are compatible with
any Qol quantification method, and work in scenarios with
either continuous and discrete Qols. The problem of which
method the platform adopts to calculate workers’” Qols is
application dependent and out of the scope of this paper.
Typically, workers might know some of the factors that
affect their Qols. However, workers usually do not know
exactly how Qols are calculated by the platform. Hence,
they do not know the exact values of their Qols.

3.3 Auction Model

In this paper, we consider strategic and selfish workers that
aim to maximize their own utilities. The fact that workers
bid on subsets of tasks motivates us to use reverse combinato-
rial auction to model the problem. In the rest of the paper,
we use bundle to refer to any subset of tasks of 7. Different
from traditional forward combinatorial auction [43], [44], we
formally define the concept of reverse combinatorial auction
for our problem setting in Definition 1.

Definition 1 (RC Auction). In a reverse combinatorial auction
(RC auction), each worker i € N is interested in a set of K; > 1
bundles, denoted as T;={T},...,T*}. For any bundle
I' C T, the worker has a cost function defined as

. ; J g J
) = {c if 3 eTist.TCT]

otherwise

(1)
+o00,

Both T ; and the cost function C;(-) are worker i’s private infor-
mation. If K; = 1 for every worker, then the auction is defined
as a single-minded reverse combinatorial auction (SRC
auction). And it is defined as a multi-minded reverse combinato-
rial auction (MRC auction), if K; > 1 for at least one worker.

In an SRC auction, 7; contains only worker i’s maxi-
mum executable task set I';. That is, I'; consists of all the
sensing tasks that worker i is able to execute. Since she is
not capable to carry out tasks beyond I';, her cost for any
bundle I' Z I'; can be equivalently viewed as +oc. Simi-
larly in an MRC auction, the union of all the bundles in
T, is T;. That is, |J f‘:’ll“j =T,. If worker i is a winner of
the RC auction, she will be paid p; for executing the corre-
sponding set of sensing tasks. In contrast, she will not be
allocated any sensing task and will receive zero payment
if she is a loser. We present the definitions of the utility
of a worker and the profit of the platform formally in
Definitions 2 and 3.

Definition 2 (A Worker’s Utility). The utility of any worker
ieNis
ifieS

Di Ci,
;= 2
i {0, otherwise. @

Definition 3 (Platform’s Profit). The profit of the platform
given workers” Qol profile ¢ is

= Vo (S) = Y i (3)

€S
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where the value function V?() 2N — R* maps the winner

set S to the value that the winners bring to the platform. Fur-
thermore, V?(-) is monotonic in ¢q. That is, for any

T ={q,....qv} and 7 ={q,,...,qy} such that ¢ >,
holds Vi € N, we have V?(S) > VE,/ (S).

Similar to the traditional VCG mechanism design [38],
[39], we aim to design mechanisms that maximize the social
welfare, which is formally defined in Definition 4.

Definition 4 (Social Welfare). The social welfare of the whole
MCS system is

Usocial = Up T Z U; = Vﬁ) (S) - Z G- (4)

ieN ic€S

3.4 Design Objective
In this paper, we aim to design dominant-strategy mechanisms

in which for every worker there exists a dominant strategy
[45] defined in Definition 5.

Definition 5 (Dominant Strategy). A strategy st; is the dom-
inant strategy for worker i if and only if for any other strategy
st and any strateqy profile of the other workers, denoted as
st_;, the property w;(st;, st_;) > w;(st},st_;) holds.

In our SRC auction, each worker submits to the platform
a bid (I';, b;) consisting of her declared interested bundle I';
and the bidding price b;. Since workers are strategic, it is
possible that she declares a bid that deviates from the true
value (T;, ¢;). However, one of our goals for the SRC auction
is to design a truthful mechanism defined in Definition 6.

Definition 6 (Truthfulness). An SRC auction is truthful if
and only if it is the dominant strategy for every worker i € N
to bid her true value (I';, ¢;).

Noticed from Definition 6 that we aim to ensure the truth-
fulness of both the cost ¢; and bundle I';. Besides truthfulness,
another design objective for the SRC auction is to ensure that
every worker receives non-negative utility from participat-
ing. Such property is critical in incentive mechanisms
because it ensures that workers will not be disincentivized to
participate for receiving negative utilities. This property is
formally defined as individual rationality in Definition 7.

Definition 7 (Individual Rationality). A mechanism is indi-
vidual rational (IR) if and only if u; > 0 is satisfied for every
workeri € N.

As mentioned in Section 3.3, our mechanism aims to
maximize the social welfare. However, as will be proved in
Section 4, the problem of maximizing the social welfare
in the SRC auction is NP-hard. Hence, we aim to design a
polynomial-time mechanism that gives us approximately
optimal social welfare with a guaranteed approximation ratio.

In the domain of multi-minded combinatorial auction,
requiring truthfulness limits the family of mechanisms that
can be used, as pointed out in [44]. Hence, in our MRC auc-
tion, we aim to design a dominant-strategy mechanism that
can still yield a guaranteed approximation ratio to the optimal
social welfare without ensuring truthfulness. In fact, as
mentioned in [44], the requirement of truthfulness is only to
obtain close-to-optimal social welfare with strategic worker
behaviors, but not the real essence. Therefore, as long as the
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TABLE 1
Summary of Design Objectives

Model Dominant Strategy Truthful IR Approx. Ratio Complexity

SRC Vv Vv
MRC N X

vV Guaranteed Polynomial
vV Guaranteed Polynomial

approximation ratio is guaranteed when workers play their
dominant strategies, it is justifiable for us to relax the truth-
fulness requirement. Additionally, we also require our
mechanism to be individual rational and have a polynomial
computational complexity.

Authors in [44] address the issue of mechanism design
for multi-minded forward combinatorial auctions. Their
mechanisms cannot ensure that workers have dominant
strategies and cannot be applied to reverse combinatorial
auctions. However, in contrast, we are able to design a dom-
inant-strategy incentive mechanism for the MRC auction in
this paper. We summarize our design objectives for both
the SRC and MRC auctions in Table 1.

4 SRC AUCTION

In this section, we introduce the mathematical formulation,
the proposed mechanism, as well as the corresponding anal-
ysis for the SRC auction.

4.1 Mathematical Formulation

In our SRC auction, each worker’s bid (I';, b;) consists of her
declared interested bundle I'; and the bidding price b;.
Although our model is valid for any general value function
V?() that satisfies Definition 3, to simplify our analysis we

assume that V?() is the sum of the value, v;, contributed

by every winner i € S. Furthermore, we assume that v; is
proportional to the total Qol provided by this worker. Given

workers’ bidding bundle profile T = {I',...,I'n} and the

winner set S, the platform’s value function V?(-) can be
represented by

VolS) = Y= Sl ®

i€S (=

where « is a coefficient that converts Qol to monetary
reward.

In this paper, we consider Qol coverage in the SRC auc-
tion. Intuitively, for the task that none of the workers capa-
ble to execute it has adequately high Qol, collective efforts
of multiple workers are necessary to ensure high sensing
quality. We use ij ?(S) to denote the total Qol that all

winners have on task t; € 7. Furthermore, we approximate
Q. ?(S ) as the sum of the Qol of the winners that execute
J

this task. Therefore, Qol coverage is equivalent to guaran-
teeing that every task is executed by workers with sufficient
amount of Qol in total. Note that such additive assumption
of Qol has been justified by results and analyses provided
in previous work (i.e., Corollary 1 in [13], and Corollary 1 in
[8]). Based on this assumption, () —(S) can be represented
by the following 5 4

i:rjel"i,ies
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Since we aim to maximize the social welfare given in
Definition 4, the winner determination and pricing can be
decoupled into two separate problems. We formulate the
SRC auction winner determination (SRC-WD) problem as
the following integer linear program.

SRC-WD Problem:

maXZ(“Q7?|Fi| —bi)x; (7
ieN
s.t. Z gz > Qj, Vi, eT (8)
i:rjel",;.,ie./\/'
z; €{0,1}, Vie N )

Constants. The SRC-WD problem takes as input constants
o, workers’ bid profile {(I‘l, b1),...,(Cn,bn) }, workers’
Qol profile ¢ and tasks’ Qol requirement profile 5 =

{le~"aQﬂI}'

Variables. In the SRC-WD problem, we have a set of
binary variables {zi,...,zy} for every worker i € N. If
worker 7 is included in the winner set S, then z; = 1. Other-
wise, x; = 0.

Objective Function. Since the platform does not know the
true values of workers’ interested bundles and the corre-
sponding costs, {(I',c1),...,(Ty,cy)}, the objective func-
tion that it directly tries to maximize is the social welfare
based on workers’ bid profile {(I';,b),...,(y,by)}. We
use W = {wy,...,wy}, in which w; = ag|T’;| — b;, to denote
the marginal social welfare profile of all workers based
on workers’ bids. Then, we have the objective function
Dies Wi = Y ies(aqiTi| = bi) = 35, p (@qi[li| — b;)x;. Later in
Section 4.3, we will show that in our mechanism every
worker in fact bids truthfully. Hence, the objective function
is equivalent to the actual social welfare.

Constraints. Constraint Equation (8) represents the Qol
coverage for every task t; € 7, which ensures that the
total Qol of all the winners for this task, calculated as
Q,jyﬁ(s) = Zi:rjer,,ies qi = Zz‘:rjer,,ie/\/ %, is no less than
the Qol requirement Q);.

Next, we prove the NP-hardness of the SRC-WD prob-
lem in Theorem 1.

Theorem 1. The SRC-WD problem is NP-hard.

Proof. In this proof, we demonstrate that the NP-complete
minimum weight set cover (MWSC) problem is polyno-
mial-time reducible to the SRC-WD problem. The reduction
starts with an instance of the MWSC problem consisting of
a universe of elements & = {1y, ..., 7y} and a set of N sets
O ={I'1,...,I'v} whose union equals U. Every set I, € O
is associated with a non-negative weight w;. The MWSC
problem is to find the subset of O with the minimum total
weight whose union contains all the elements in /.

Based on the instance of the MWSC problem, we con-
struct an instance of the SRC-WD problem. First, we
transform I'; into I} such that for every element in T
there exist I; € Z" copies of the same element in I'.
We require that every element t; € I is covered for at
least L; € Zt times. After the reduction, we obtain an
instance of the SRC-WD problem in which workers’
Qol profile is ¢ = {l1,...,Ix}, workers” bidding bundle

1955

profile is T = {I'1,...,T'n}, workers’ marginal social
welfare profile is W = {~wy,...,—wy} and tasks’ Qol
requirement profile is Q = {L1,...,Ly}. Noticed that
the SRC-WD problem represents a richer family of prob-
lems in which any worker ¢’s Qol, ¢;, and any task j's Qol
requirement, @;, could take any value in R*. Further-
more, the marginal social welfare can take any value in
R. Hence, every instance of the MWSC problem is poly-
nomial-time reducible to an instance of the SRC-WD
problem. The SRC-WD problem is NP-hard. 0

4.2 Mechanism Design

Because of the NP-hardness of the SRC-WD problem, it is
impossible to compute the set of winners that maximize the
social welfare in polynomial time unless P = NP. As a
result, we cannot use the off-the-shelf VCG mechanism [38],
[39] since the truthfulness of VCG mechanism requires that
the social welfare is exactly maximized. Therefore, as men-
tioned in Section 3.4, we aim to design a mechanism that
approximately maximizes the social welfare while guaran-
teeing truthfulness.

Myerson’s characterizations of truthfulness for single-
parameter auctions [46] are not directly applicable in our sce-
nario, because our SRC auction is a double-parameter auction
that considers both bundle and cost truthfulness. Moreover,
different from the characterizations of truthfulness for single-
minded forward combinatorial auctions proposed in [43], we
describe and prove the necessary and sufficient conditions for
a truthful SRC auction in the following Lemma 1.

Lemma 1. An SRC auction is truthful if and only if the follow-
ing two properties hold:

e Monotonicity. Any worker i who wins by bidding
(Ly, b;) still wins by bidding any b, < b; and any
I O T; given that other workers’ bids are fixed.

o  Critical payment. Any winner i with bid (I';,b;) is
paid the supremum of all bidding prices b, such that
bidding (I';,b,) still wins, which is defined as worker
i’s critical payment.

Proof. It is easily verifiable that a truthful bidder will never
receive negative utility. If worker i’s any untruthful bid
(I, b;) is losing or I'; T;, her utility from bidding (I';, b;)
will be non-positive. Therefore, we only need to consider
the case in which (I';, b;) is winning and I'; C T,.

e Because of the property of monotonicity, (T';,b;)
is also a winning bid. Suppose the payment for
bid (I';,b;) is p and that for bid (I';,b;) is p. Every
bid (T;,b,) with b, > p is losing because p is the
worker 4’s critical payment given bundle T;.
From monotonicity, bidding (I';, ¥}) is also losing.
Therefore, the critical payment for (I';,b;) is at
most that for (E, b;), which means p < p. Hence,
the worker will not increase her utility by bid-
ding (I';, b;) instead of (I';, b;).

e Then, we consider the case in which bidding truth-
fully (T';, ¢;) wins. This bid earns the same payment
p as (I';, b;). Then her utilities from these two bids
will be the same. If bidding (T;,¢;) loses, then
we have ¢; > p > b;. Hence, bidding (T, b;) will
receive negative utility. Therefore, (I';, b;) will also
not increase her utility compared to (T, ¢;).
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Thus, we conclude that an SRC auction is truthful if
and only if the monotonicity and critical payment prop-
erties hold. 0

We utilize the rationale provided in Lemma 1 to design a
quality of information aware SRC (Qol-SRC) auction for Thanos
in the single-minded scenario. Specifically, we present the
winner determination and pricing mechanisms of the Qol-
SRC auction respectively in Algorithm 1 and 2.

Algorithm 1. Qol-SRC Auction Winner Determination
Input: 7, N, W, ¢, Cj, f);
Output: S;
// Initialization
1N 0,850
// Select workers withnon-negativemarginal
social welfare
2 foreachis.t. w; > 0 do
3 S—S8SU{i}
AN —N\S;
// Calculate residual QoI requirement
5 foreach js.t.7; € 7 do
6 QI/ = Q- nlin{Q]-7 Zi:zjel“,;,ies a};
// Main loop
7 while ) ;.7 Q) # 0do
// Find the worker with the minimummarginal
social welfare effectiveness
[ = arg min;
g eN~” Z
9 S—Su{l}
10 N~ N \{l};
// Update residual requirement
11  foreach js.t.7; € 7 do
2 Q< Q- min{Q,ak;
13 returnS;

Jiri€ly J"‘

The platform calculates workers” marginal social welfare
profile w using workers” bids {(I';,b1),...,(Iy,by)} and
utilizes W as input to the winner determination algorithm
shown in Algorithm 1. First, the platform includes all work-
ers with non-negative marginal social welfare into the win-
ner set S (lines 2-3). By removing the current winners from
N, the platform gets the set of workers N~ with negat-
ive marginal social welfare (line 4). Then, the platforLry cal-
culates tasks’ residual Qol requirement profile @ by
subtracting from @ the Qol provided by the currently
selected winners (lines 5-6). The main loop (lines 7-12) is
executed until every task’s Qol requirement is satisfied. In
the main loop, winner selection is based on marginal social
welfare effectiveness (MSWE), defined as the ratio between
the absolute value of worker i’s marginal social welfare |w;|
and her effective Qol contribution Zﬁ o mm{Q " ai}. In
every iteration, the worker with the minimum MSWE
among the remaining workers in N~ is included into S
(lines 8-9). After that, the platform updates N~ and tasks’
residual Qol requirement profile @ (lines 10-12).

Algorithm 2 describes the corresponding pricing mecha-
nism. It takes the winner set S as input and outputs the pay-
ment profile . First, 7 is initialized as a zero vector
(line 1). Then, the platform includes all workers with non-
negative marginal social welfare into N'* (lines 2-3). The
main loop (lines 4-12) calculates the platform’s payment
to every winner. For every winner i€ S, the winner
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determination mechanism in Algorithm 1 is executed with
all workers except worker 4 until the Qol requirement of
every task in I'; has been fully satisfied (line 5). We reach
the point such that it is impossible for worker i to be
selected as a winner in future iterations of Algorithm 1.
Then, the platform gets the current winner set S’ (line 6)
and calculates p; differently in the following two cases.

e Case 1 (lines 7-8). Any winner ¢ belonging to case 1
has w; > 0. Hence, this worker’s critical payment is
the bidding price b} that satisfies w} = ag;|I';|]— b, = 0.
That s, p; = ag|T;].

e Case 2 (lines 10-11). For any winner i belonging to
case 2, we go through every worker k€ S\ N . We
calculate worker s maximum bidding price b, to be
able to substitute worker k as the winner. That is, b,

satisfies
Z]‘:‘[]EFZ' mln{Q;J q7} Zj:rjel“k. mln{Q;7 qk}
This means
Z jiriel’; min{Q/'a q7}
b = ag|ly| - izl J 11)

Wi " .
Zj:rjel"k mln{Q;‘? qk‘}

Finally, the maximum value among all b/’s is used as
the payment to worker .

Algorithm 2. Qol-SRC Auction Pricing

Input: S, o, ¢, W, ?;
Output: 7;
// Initialization
1N —0,p —{0,...,0%
// Findnon-negative marginal welfare workers
2 foreach is.t. w; > 0 do
3 NT—NTU
// Main loop
4 foreachi € S do
5  run Algorithm 1T on A"\ {i} until _— Q;=0;
6 S’ « the winner set when step 5 stops,
// Calculate payment

7 if|S| < |N'| then
8 pi < ag|li[;
9 else
10 foreach k € S'\N" do
11 6 «— tasks’ residual Qol requirement profile
when winner k is selected;
Z_]:Uen min{Q’,q; } }
s o |Ts| — o, Zomel 0 L
12 b m“{p”“q"|r”| O e, (@)

13 returnp’;

4.3 Analysis

First, we analyze the truthfulness and individual rationality
of the QoI-SRC auction in Theorems 2 and 3.

Theorem 2. The QoI-SRC auction is truthful.

Proof. Suppose worker ¢ wins by bidding (I';, b;). We con-
sider worker i’s any other bid (I'}, b) such that b} < b; or
I or.
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e Case 1 (w; > 0). The marginal social welfare for
bidding (I‘,/l-, b)) is w, = aq;|T| — b > ag|Ty| —b; > 0.

e Case 2 (w; < 0). Bidding (I'}, b)) will make w, >0

or decrease the value of worker i's MSWE.

Hence, worker i is still a winner by bidding (T}, b}) and
the Qol-SRC auction winner determination algorithm sat-
isties both bidding bundle and price monotonicity. Fur-
thermore, it is easily verifiable that the pricing mechanism
in Algorithm 2 uses the supremum of bidding prices b
such that bidding (I';, ¥}) still wins. Hence, from Lemma 1

we conclude that the QoI-SRC auction is truthful. O
Theorem 3. The QoI-SRC auction is individual rational.

Proof. From Theorem 2, we have proved that workers bid
truthfully in our Qol-SRC auction. Hence, any worker :
bids its true cost ¢;. Since every winner i is paid the
supremum of bidding prices given the bundle I';, we have
pi > ¢; for every winner. Apparently, losers have zero util-
ities in our QoI-SRC auction. Therefore, the utility for
every worker ¢ satisfies u; > 0 and the Qol-SRC auction is
individual rational. ]

Then, we analyze the algorithmic properties of the
QoI-SRC auction including its computational complexity
and approximation ratio to the optimal social welfare in
Theorems 4 and 5.

Theorem 4. The computational complexity of the Qol-SRC
auction is O(N?M).

Proof. The computational complexity of Algorithm 1 is
dominated by the main loop, which terminates after N
iterations in the worst case. In every iteration, the algo-
rithm goes through every task z; € 7. Hence, the compu-
tational complexity of Algorithm 1 is O(NM). Similarly,
we have that the computational complexity of Algorithm 2
is O(N*>M). Therefore, we conclude that computational
complexity of the QoI-SRC auction is O(N?M). o

Then, we provide our analysis about the approximation
ratio of the QoI-SRC auction using the method similar to the
one proposed by Rajagopalan et al. [47]. In our following
analysis, we use N to denote all workers i € A/ with nega-

tive w; and 6 ={Qy,...,Qy} to denote tasks’ residual
Qol requirement profile after Algorithm 1 includes all work-
ers with w; > 0 into the winner set. Then, we normalize the
w; for every worker ¢ € N, such that the normalized mar-
ginal social welfare

/ Wi

wW; = ———
maxy,cn— Wy

> 0.

Thus, with only a multiplicative factor change to the objec-
tive function, we formulate the linear program relaxation of
the residual SRC-WD problem defined on worker set N~ as
the normalized primal linear program P. The dual program
is formulated in program D.

P : min Z wix; (12)
1ENT
s.t. Z QT > Q;, V€T (13)
’I‘,:'L'jGI‘,’,iEN7

1957

0<uz <1, Vie N~ (14)

D : max Z Q;yj — Z Z; (15)
jrer ieN -

s.t. Z qty/—ZL<w,, Vie N~ (16)

j:TJEFi
y; 20, Vi, €T an
z 20, Vie N© (18)

It is easily verifiable that the |max;cy—w;| multiplicative
factor difference between the objective functions of P and
the SRC-WD problem does not affect the approximation
ratio of Algorithm 1. Next, we introduce several notations
and concepts utilized in our following analysis.

We define any task t; € 7 as alive at any particular itera-
tion of the main loop in Algorithm 1 if its Qol requirement is
not fully satisfied. Furthermore, we define that task z; is cov-
ered by I'; if 7; € I'; and 1, is alive when worker i is selected.
The coverage relationship is represented as 7; < I';. Then, we
define the minimum measure of Qol as Ag, the unit Qol. Sup-
pose when worker ¢ is about to be selected, the residual Qol

/
requirement profile is 6 ={Q},...,Q)} and I'; is the i;th
set that covers t;, the corresponding normalized MSWE in
terms of unit Qol can be represented
wAgq

L (19)
Zj:zje[‘i mln{Qja Qi}

W(Tﬁij) =

We assume that 7; is covered by k; sets and we have
W(rj, 1) <--- < W(rj, k) from Equation (19). Then, we
define the following constants

LJ

as well as,

1 -

j:ZjET
which are used in the presentation of Lemma 2.

Lemma 2. The following assignments of y; and z; for Vt; € T
and Vi € N are feasible to D.

_ Wz k)

P = Vi, €T
7T VR A
> e, (nnn{Q;,qi}(I/V(rj,kj)—W(zj.zj))) _
2 = 20HAq » ? € S
0,i¢S

Proof. Suppose for any worker i € N, there are ¢, tasks in
bundle I';. We reorder these tasks in the order in which
they are fully covered.

If worker 7 is not selected as a winner in S, then we have
zi = 0. Suppose when the last unit Qol of 7; is about tg, be
covered, the residual Qol requirement profile is Q =

{Q7,...,Q%}, then the total residual QoI of alive tasks con-
tained by I'; is represented as Z;’L’:j min{@},¢;}. We have

wiAg
Wt kj) € o~
Zh:j mln{Qh’ q7}
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Therefore, we have

Z qiY; — zi <

<

wigi B
j=1 20H,, Z}L_J l’l’lll’l{Qh, qé}

1 1
(L)
2 m

Mﬂ

==

m

IA
&

If worker i € S, then we assume that when worker i is
selected as a winner, t; tasks in I'; have already been fully
covered. We have

ti
Z qiYj — i
j=1

X aW (5 k)

20H,,Aq
Z;":tgﬂ min{@Q}, ¢;} (W(tj, kj) — W(z),45))
29H7nAq
! ti H ;
B Zt/’zl qu(Tj, k‘J) Zj:t;Jrl mln{Q;W qi}W(rj’ Zj)
T 20H,Aq 20H,,Aq
. Z;’":,,;H (¢ — min{Q}, ¢;}) Wz, ;)
20H,,Aq
t q; w
< ZJ ! Zh nun{Qh qi} 'LUZ + 0
- 20H,, 20H,, 20H,
<uw|

i

Therefore, we arrive at the conclusion that the assign-
ments of y; and z; in Lemma 2 are feasible to D. ]

Then in Theorem 5, we present our result regarding the
approximation ratio of Algorithm 1.

Theorem 5. Algorithm 1 is a 20H,,-approximation algorithm
for the residual SRC-WD problem defined on worker set N~ .

Proof. By substituting the dual assignments given in
Lemma 2 into the objective function (15), we have

> Qui= ) s

j:ZjET ieN™
S s Sy, (mind @0} (W (z3,15) = Wiz, k) )
N 20H,,Aq
Zj:rJET QIW(."—W k])
20H,,Aq
w; Aq
ZLEN ns Z/ ;=T mln{Q}7 ql} Z mm{Q/js[Ii}
N 20H,,Aq
_ > ieN—ns W
20H,,

Because D is the dual program of P, we have

/!
Lievns U < OPTp < OPTp < OPTsrc—wp-
20H,
Therefore, Algorithm 1 is a 20H,,-approximation algo-
rithm for the residual SRC-WD problem defined on
worker set N . 0
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Note that there is a max;c - |I';| factor in the parameter 6,
which could be large theoretically, and in worst case equals
to the number of tasks M. However, practically, as any
worker ¢ typically has a limited capability and interest in
terms of the number of sensing tasks she can and wants to
execute, the value max;cy—|I';| will be far less than M, which
prevents 6 from growing excessively large, in practice, as M
increases. Furthermore, it is clear that m = O(M), and
H,, = O(logm), and thus we have that H,, = O(log M).
Therefore, although the factor H,, is not a constant, it is still
much smaller than M in order sense. Thus far, the 20H,,
approximation ratio proved in Theorem 5 is the best one we
have found, and we leave the proof of the tightness of this
ratio, or the derivation of a better one in our future work.

5 MRC AuCTION

In this section, we present the mathematical formulation,
mechanism design and the analysis for the MRC auction.

5.1 Mathematical Formulation
In the MRC auction, we also use the form of the platform’s
value function V—>( ) given in Equation (5). If the platform

is g1ven workers cost function proﬁle, denote as C’ =

{Ci(*),...,Cn(-)}, the MRC auction winner determination

(MRC-WD) problem can be formulated as follows.
MRC-WD Problem:

maxz (aqi|Fi| — C’L(FL))JL, (20)
ieN

st. [, CTY, A e T, Vie N (21)

z; €{0,1}, VieN. (22)

The MRC- WD problem takes the parameter &, workers’
Qol profile ¢ and workers’ cost function profile C as
input. It has a set of binary variables {z1,...,z,} indicating
whether worker i is selected in the winner set S. That is, if
i € S, then z; = 1. Otherwise, z; = 0.

Furthermore, for every worker 7, we have a variable T’;
indicating the set of sensing tasks that the platform allocates
to this worker. Constraint Equation (21) ensures that I'; is
the subset of at least one bundle I € 7,. Therefore, the
MRC-WD problem aims to find the set of winners S and

the corresponding task allocation profile denoted as T =
{I'1,...,I'y} that maximize the social welfare represented

by the ob]ectlve function. We use I’ to denote the bundle
with the maximum cardinality in 7; and w' . = ag;| I'.

max | -

The

max’
maximum social welfare is achieved by selecting all work-
ers with positive wy;,,, as winners and allocating to every

¢; to denote worker i’s marginal social welfare for I'’

max
winner i the set of tasks I"' _ .

However, the challenge is that cost function profile Cis
not known by the platform and we still aim to design a
mechanism that approximately maximizes the social wel-
fare with a guaranteed approximation ratio. Then, we pres-
ent the design of our mechanism in Section 5.2 that achieves
this objective while ensuring individual rationality and
polynomial computational complexity.
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5.2 Mechanism Design

Requiring truthfulness in multi-minded combinatorial auc-
tions limits the family of mechanisms that can be used, as
mentioned in [44]. As long as the mechanism can achieve
close-to-optimal social welfare with a guaranteed approxi-
mation ratio, it is justifiable for us to relax the truthfulness
requirement, as pointed out in [44]. In Algorithm 3 we
describe our design of the iterative descending dominant-
strategy quality of information aware MRC (Qol-MRC) auction
for Thanos in the multi-minded scenario, which is different
from the mechanisms designed for multi-minded forward
combinatorial auctions proposed in [44].

Algorithm 3. Qol-MRC Auction

Input: N, bmaxr _, @B, q;
Output: S, 7, T';
// Winner determination
// Initializewinner and loser sets
18«0, L0
// Initialize bidding bundles and prices

2T {0,...,0, T — T, — {buer- s e s
// Main loop
3 while SU L # N do
4  foreachie N\ (SUL)do
5 if aq¢|Fi\ — b] Z ¢ then
6 S —Su{i};
// Give worker i the option to enlarge
her bidding bundle
7 else
8 allow worker i to enlarge I'; to any I'; s.t. T, D T;
// Update bidding bundle
9 if I'; # I, then
10 Iy =T
11 if(Xq,‘F1| —b, Z ¢ then
12 S Suliy;

13 foreachi e N\ (SUL) do
// Give worker 1 two options
14 option 1: b; ﬂ,
15 option 2: b; « 0;
16 if b; = 0 then
17 L LUfi);
18T —{l; € F|7ES}
// Pricing
19 P — b
_
20 returnS, p, T';

The QoI-MRC auction described in Algorithm 3 consists of
a winner determination phase (lines 1-18) and a pricing phase
(line 19). Every winner i € S will be allocated her bidding
bundleI'; and be paid her bidding price b; of the final iteration
of the winner determination phase. We assume that the plat-
form has the information about the upper bound and lower
bound of workers’ costs denoted as ¢, and ¢, respectively.
The platform initializes every worker i’s bidding bundle and
bidding price as I'; = 0} and byax > Ciax (line 2). Moreover, the
input parameters § > 1and e € (0, cyin]-

The main loop (lines 3-17) is executed until every worker
is either a winner or a loser. In every iteration of the main
loop, every worker i such that ag;|I';| — b; > € is included in
the winner set S (lines 5-6). For any worker i that is neither a
winner nor a loser in the current iteration, the Algorithm
gives her an option to choose whether she will enlarge her
current bidding bundle T'; to any bundle I'; that contains I';

1959

(line 5). If after the bundle enlarging ag;|T";| — b; > € holds,
this worker is included in the winner set (Iines 11-12). Other-
wise, she is given the following two options to choose from.

e Option 1 (line 14). By choosing option 1, worker i
divides her bidding price b; by B. As long as she is
fully rational, she will choose optlon 1 rather than
option 2 to drop out of the auction, if % > ¢; hold. By
doing so, she keeps herself in the auction and makes
it still possible for her to win in one of the future iter-
ations to receive positive utility.

e Option 2 (line 15). By choosing option 2, the worker ¢
drops out of the auction. If I}} < ¢;, any rational user 4
will choose option 2 because it is impossible for her
to obtain positive utility even though she remains in
the auction in this case.

Finally, every winner ¢ is allocated her bidding bundle I';

(line 18) and be paid her bidding price b; (line 19) of the final
iteration of the winner determination phase.

5.3 Analysis

Although the QoI-MRC auction cannot guarantee truthful-
ness because workers’ bidding prices when Algorithm 3 ter-
minates will possibly not be equal to workers’ true costs, we
show in the following Theorem 6 that every worker still has
a dominant strategy.

Theorem 6. Every worker i € N has the following dominant
strategy in the Qol-MRC auction.

e Worker i enlarges bundle T; to T"
iteration.

o  When worker i is given the options to divide her
bidding price b; by B or drop out of the auctzon she
will always choose the former as long as % > ¢; and
the latter 1f‘9 <.

in the first

max

Proof. Obviously, any rational worker ¢ will choose to divide
her current bidding price b; by g as long as > ¢; when
she is given the two options. By doing so, it is st111 possible
for her to win the auction and be paid p; > ¢;. If b—ﬂ‘ <,
then even if she wins the auction the payment p; will not

be larger than ¢;. Hence, she will drop out in this case.
Then, we study whether any worker i will enlarge her
bundle to some I'} # I in the first iteration.

o Case 1 (gl .| — bumax > @qi|T}| — buax > €). Both
I and F. will make the worker win the auction

max

max |

in the first iteration and be paid by.x. We have
() = w(T).

o Cuase 2 (aql\l"max| bmax). The

worker will win and be paid by, by enlarging to

I in the first iteration and we have u(I"

max max) =
buax — c;. If she proposes I'; instead of I" , she
will be asked to decrease her bid or drop out in
the first iteration. Eventually, she could lose or
win with being paid b, < by... Her utility could
either be u(I)) =0 or u(T}) =b, —c¢;. We have
u(Thae) > ().

e Case 3 (c> och|me| — bax > aqi|Ti| — ba)-
Both I and I"} will make the worker face the

choices of decreasing her bid or dropping out in
the first iteration. If eventually she wins in both

nnx >e€ > OIQJF |
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cases, then the number of iterations before she
wins if she proposes I .. will be smaller than or
equal to that of I';. The payments p; and p, for the
two cases satlsfy pi > p, and we have w(T%,.)
> u(I%). If she loses in both cases, then u(l“;m) =

u(T;) = 0. The last scenario is that she wins by
proposing I' . and loses by proposing I'; in the
first iteration. Then, we have u(I", ) > 0 =u(T").

We have u(T" ) > u(I"}) with at least one scenario
with strict inequality. Hence, worker i enlarges bundle
[, to T, in the first iteration. We arrive at the con-

clusion about any user’s dominant strategy stated in
Theorem 6. O

Theorem 7. The Qol-MRC auction is individual rational.

Proof. When a worker is given the choices to decrease her
bid or drops out of the auction, any worker ¢ will drop
out if % < ¢;. She becomes a loser and obtams u; = 0. The
worker only chooses to divide b; by 8 if b > ¢;, which
ensures that her payment p; > ¢; if she wins. In this case,
we have u; > 0. Therefore, u; > 0 and the QoI-MRC auc-
tion is individual rational. O

Then, we analyze the algorithmic properties of the Qol-
MRC auction computational complexity and approximation
ratio in Theorems 8 and 9.

Theorem 8. The computational complexity of the QoI-MRC
auction is O(N).

Proof. It is easily verifiable that the main loop of Algorithm 3
terminates after O(log 422) number of iterations. The

computational complexity inside the main loop is O(N).
Therefore, the computational complexity of the Qol-MRC
auctionis O(N). 0

In Theorem 9, we present our results about the approxi-

mation ratio of the Qol-MRC auction to the optimal social

r
welfare. Next, we let a; = M and use a; as each worker

i’s type that uniquely charactérizes the worker. Furthermore,
we let F(-) denote the CDF of workers’ types, use a to denote
the upper bound of the support of F(-), and let y = uax,

Theorem 9. The QoI-MRC auction has a
1
1—
(F@-F(p+1)p
(F(B+1)-F() (B+(8-1)y)

approximation ratio to the optimal social welfare.

Proof. By Theorem 6, every worker i € N enlarges her bun-
dle to anax in the first iteration. Furthermore, the winner
set S output by Algorithm 3 consists of the set of winners

S1 = {i € N|ag|I" .| — buax > €} that win in the first iter-

ation, as well as the winners S, that win in subsequent

iterations, i.e., Sy contains every worker i such that the

following Condition,

oq; ‘I‘max| - bma.x <€ (23)
bll)JX

adqg; |Fmax‘ ﬂr, < € (24)

0| Ty — 25 > e, (25)

bass > ¢, (26)

for some integer r; > 1, are satisfied. Clearly, iteration r;
is the first iteration that makes o[, | — bg# > e

Let Sopr be the winner set of the optimal solution
of the MRC-WD problem, which clearly satisfies
that Sopr = {i € Nag;|T" .| — ¢ > 0}. Recall that in
Algorithm 3, we set the parameter bmax > Cmax. For any
worker i € §;, we have that ag|I" ¢ >a gl

max | max ‘

Cmax > (X(I7|Fmdx| - bmax =€ > 0/ and thus Sl - ’SOPT~ By
Condition Equations (25) and (26), we have that
bmax
agi|T:, | —ci > ag|l" .| — o >e >0,

and thus Sy C Sopr also holds. Therefore, the winner set
S =81 U S, given by the QoI-MRC auction is a subset of
the optimal winner set Sopr. We let S3 = Sopr \ S, and
we have that S3 contains every worker 7 such that the fol-
lowing Condition,

O{qL|FL | —c > 0, (27)
aq7|rmax| - bde < 6 (28)
aq; ‘Fmax| b;?a\ < 6 (29)
s > ¢, (30)
o < e, (31)

for some integer r; > 1, are satisfied. Clearly, r; is the iter-
ation in which the worker ¢ drops out, and S3 denotes the
set of workers in the loser set £ with ag|I" . | —¢; > 0.
We use APP to denote the social welfare yielded by the
QoI-MRC auction, and OPT to denote the optimal social wel-
fare. Based on our definition of S;, Sy, and S5, we have that

APP Y sloqiT)l — )

OPT ZiESOpT (aq7|l_‘;ndx| - Ci)
_ ZieS(aqi|F:11ax‘ - ci)
Zie&u53 (gl — i) (32)
1
=1-

1+ Zles(a(]ilrflmx‘_ci) ’
ZieSS(QQi‘Félax‘fcn

As aforementioned, we have that

ag|I™ ¢ >eVieS. (33)

max |

Furthermore, for each worker i € S3, we have that

b
rmx| & S aql‘rmax| ﬂ:ixl

bma.x (ﬂ - 1)bmax
ol — G + Tt
(/3 B ]-)bmax

ﬂr’ﬂﬁl

)

Thus, by substituting Inequality (33) and (34) into
Equation (32), we have that

APP 1
R —— > 1 — .
OPT = 1 ,__8F

181 (82 +(-1)y)

aq;|l

= aq|l’
(34)
< €+

(35)
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Next, we derive a lower bound of % represented by

the CDF F(-) of workers’ types. For all worker i € S;, by
Condition (27), we have that a; > 1, and by Condition
(29) and (31), we have that

bmax

aq7|r7;r1ax| < /3”

and thus a; < B+ 1. Therefore, we have that
18| |Sopr| — [S3]
|Ss| |S5
(F(@)— F(1)) — (F(B+1)— F(1))
- F(B+1)— F(1)
_ F@ - F(p+1)
CF(B+1)-F(1)°
Next, we substitute Inequality (36) into Inequality
(35), and we have that
APP 1
——<1-
orPT (F@-F(p+1)
(P(B+1)-F) (B2+(8-1)y)
Hereby, we finish the proof of this theorem. O

+e < (,3+1)C7j,

(36)

The approximation ratio given in Theorem 9 generalizes to
cases where workers’ types follow any arbitrary distribution.
Next, we present in Corollary 1 the approximation ratio
when workers’ types are distributed uniformly.

Corollary 1. If workers types follow a uniform distribution, then
the QoI-MRC auction has a

1

- (@—p-1)B
L+ ey

1

approximation ratio to the optimal social welfare.

Proof. When workers types are distributed uniformly, we
have that

F@) - F(p+1) _a-p-1
F(p+1)—F(1) B

(37)

By substituting Equation (37) into the ratio given in The-
orem 9, we get the approximation ratio in this Corollary. O

Note that when workers types follow some other kind of
distribution, the approximation ratio could be calculated
accordingly by plugging in the corresponding CDF.

6 SuUuMMARY OF PROPOSED MECHANISMS

Thus far, we have finished the description of the design and
analysis of Thanos for both the single-mined (Section 4) and
multi-mined (Section 5) scenarios. For the single-minded sce-
nario, we propose the QoI-SRC auction (Algorithms 1 and 2),
which is proved to be truthful (Theorem 2), individual ratio-
nal (Theorem 3), and computationally efficient (Theorem 4),
and guarantees a close-to-optimal social welfare (Theorem 5).
For the multi-mined scenario, we propose the iterative
descending Qol-MRC auction (Algorithm 3). We prove that
the proposed QoI-MRC auction is a dominant strategy mecha-
nism (Theorem 6), which satisfies individual rationality
(Theorem 7) and computational efficiency (Theorem 8), and
approximately maximizes the social welfare with a guaran-
teed approximation ratio (Theorem 9 and Corollary 1).

1961
TABLE 2
Simulation Settings for SRC Auction

Setting « Ci qi Qj T N M

I 0.1 [2,4] [1,2] [10,13] [20,30] [200,500] 100

Il 0.1 [4,8 [2,4] [10,13] [20,30] 300 [300, 600]

11 025 [1,10] [1,2] [10,13] [20,30] [1000,1250] 1000

v 0.25 [1,10] [2,4] [10,13] [20,30] 1200 (1000, 1250]

7 PERFORMANCE EVALUATION

In this section, we introduce the baseline methods used in
our simulation, as well as the simulation settings and results.

7.1 Baseline Methods

The first baseline approach is a modified version of the
traditional VCG auction [38], [39]. We integrate the concept
of Qol and the Qol coverage constraint defined in Section 4
into the VCG winner determination (VCG-WD) problem.
We call the modified VCG auction quality of information
aware VCG (Qol-VCG) auction, in which the VCG-WD prob-
lem is solved optimally and the VCG pricing mechanism
[38], [39] is utilized to derive winners’ payments.

Another baseline method is the marginal social welfare
greedy (MSW-Greedy) auction. Its winner determination
algorithm first includes every worker ¢ with w; > 0 into the
winner set. Then, it selects the worker with the largest mar-
ginal social welfare among the remaining workers in every
iteration until tasks” Qol requirements are fully satisfied. The
pricing mechanism is similar to Algorithm 4.2 which essen-
tially pays every winner her supremum bidding price to win
given her current bidding bundle. It is easily verifiable that
the MSW-Greedy auction is truthful and individual rational.

7.2 Simulation Settings

For our simulation of the SRC auction, we consider setting I-
IV described in Table 2. In setting I, we fix the number of tasks
as M = 100 and vary the number of workers from 200 to 500.
In setting II, we fix the number of workers as N = 300 and
vary the number of tasks from 300 to 600. The parameter
o = 0.1 in both settings and the values of ¢;, g;, |I';| for any
worker i € A/ and Q; for any task 7; € 7 are generated uni-
formly at random from the ranges given in Table 2. Workers
i’s maximum executable task set I'; consists of |I;| tasks
selected uniformly at random from 7. Furthermore, we also
consider setting IIl and IV that take instances with larger sizes
as inputs. Note that the optimal solution to the VCG-WD
problem of the QoI-VCG mechanism is calculated using the
GUROBI optimization solver [48].

For our simulation of the MRC auction, we consider the
two settings described in Table 3. In setting V, we fix the
number of tasks as M = 100 and vary the number of workers
from 200 to 500. In setting VI, we fix the number of workers
as N = 300 and vary the number of tasks from 200 to 400.
The parameters o = 0.2 and b, = 0.2 in both settings and
the values of ¢;, g;, |i\ for any worker i € /' are generated
uniformly at random from the ranges given in Table 3.
Worker i’s maximum executable task set I'; consists of |T;]
tasks selected uniformly at random from 7. Worker ¢’s inter-
ested bundle set consists of randomly selected subsets of T;
whose union is T;. Note that in Tables 2 and 3, we only con-
sider settings with continuous Qols. The experimental
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TABLE 3 TABLE 5
Simulation Settings for MRC Auction Execution Time (s) for Setting Il
Setting o by o« @ [T N M M 300 320 340 360 380 400 420 440
\V4 0.2 100 [4,6] [1,2] [20,30] [200,500] 100 Qol-VCG 1870 1.337 2.715 1547 2142 4338 88.57 224.3
VI 0.2 100 [6,10] [2,4] [20,30] 300 [200, 400] QoI-SRC  0.066 0.076 0.075 0.076 0.073 0.090 0.075 0.077
’ ! ! ' M 460 480 500 520 540 560 580 600
QoI-VCG 67.85 50.68 183.5 229.3 4748 751.1 1206 1269
- TABLE4 _ QoI-SRC  0.079 0.117 0.099 0.130 0.111 0.122 0.123 0.147
Execution Time (s) for Setting |
N 200 220 240 260 280 300 320 340 execution time of the Qol-VCG auction gradually becomes
Qol-VCG 1019 1606 1122 1171 5864 6314 7937 1051 O lfngtth;f mskissgénfeasible tl(i be utllhzed n pi‘?‘cnctef In
Qol-SRC 0019 0.014 0015 0015 0020 0022 0018 0019  CONrast, the Aok auction keeps low execution fime
regardless of the growth of the worker and task numbers.
N 360 380 400 420 440 460 480 500 The QoI-SRC auction is much more computationally effi-
Qol-VCG 4352 9344 9425 273.6 5254 7226 8609 2043 cient than the Qol-VCG auction.
QoI-SRC  0.019 0.021 0.021 0.019 0.023 0.021 0.021 0.024

results under settings with discrete Qols show similar trends
as in Setting I-VI, and are omitted because of space limit.

7.3 Simulation Results

In Fig. 2, we compare the social welfare generated by the Qol-
VCG auction, the Qol-SRC auction and the MSW-Greedy auc-
tion. The social welfare of the Qol-VCG auction equals to the
optimal solution of the SRC-WD problem. From Fig. 2, we
arrive at the conclusion that the social welfare of the Qol-SRC
auction is close to optimal and far better than that of the base-
line MSW-Greedy auction. The MSW-Greedy auction per-
forms the worst among the three methods, because it selects
new winners based on each workers’ initial marginal social
welfare effectiveness, instead of the updated values in each
iteration as in the Qol-SRC auction.

In Tables 4 and 5, we show the comparison of the execu-
tion time of the Qol-VCG and Qol-SRC auctions. It is obvi-
ous from these two tables that the QoI-SRC auction executes
in significantly less time than the Qol-VCG auction. With
the increasing of the number of users and tasks, the

In Fig. 2, we show our simulation results about the social
welfare for setting III and IV with larger-size problem
instances where the Qol-VCG auction is not able to termi-
nate in reasonable time. We can observe that the proposed
QoI-SRC auction still gives us a total payment far less than
that of the MSW-Greedy auction.

In Fig. 3, we compare the social welfare generated by the
QoI-MRC auction with the optimal social welfare in both
setting V and VI. We fix the parameter f =1.01 and vary
the choices of . From the two figures, we observe that the
Qol-MRC auction obtains close-to-optimal social welfare
and it becomes closer to the optimal social welfare when e
approaches 0. In Fig. 3, we fix the parameter ¢ = 0.01 and
vary the choices of B. From these two figures, we also
observe that the QoI-MRC auction obtains close-to-optimal
social welfare and as B approaches 1, it becomes closer to
the optimal social welfare.

In Fig. 4, we plot the empirical CDFs of winners’ utilities
for both the QoI-SRC and QolI-MRC auction under different
values for the number of tasks M and number of workers
N. From these two figures, we can observe that every win-
ner has non-negative utility, which shows that the QoI-SRC
and Qol-MRC auction are individual rational.
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